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Abstract

A science mission about Europa requires high-inclination low-altitude or-
bits. However, perturbations of Jupiter on the orbiter result in instability.
Previous approaches to maximize the lifetime of the orbiter use the doubly
averaged problem. We work with the unaveraged equations and find unstable
periodic orbits with long lifetimes. These low-altitude repeat ground track so-
lutions exist at all inclinations, making them suitable for mapping missions.
The governing dynamics include Hill’s model and a Europa gravity field based
on synchronous moon theory. Inclusion of additional gravity terms is trivial to
the solution method, and for the case of J3, we find a marginal impact on orbit
lifetime. The science orbits are found to last on the order of 1 year when the
initial conditions are achieved to 11 significant digits and 4 months when only 3
siginificant digits are achieved. Finally, we demonstrate that the solutions are
robust in a realistic ephemeris model, finding average lifetimes of 3 to 4 months
for wide range of initial conditions with peak lifetimes of up to 6 months.

INTRODUCTION

The instrument requirements for a scientific mission about Europa constrain the orbit
design to a subset of limited values of the orbital elements. Near-circular, low-altitude,
high-inclination orbits are normally required for mapping missions, and space-mission
designers try to minimize the altitude variation of the satellite over the surface of the
body by searching for orbits with small eccentricity and with a fixed argument of
periapsis. These orbits are usually called frozen orbits [1, 2].

However, due to third body perturbations, high-inclination orbits around plan-
etary satellites are known to be unstable [3, 4, 5], and it emerges the problem of
maximizing the orbital lifetime. Dynamical systems theory is useful in orbit main-
tenance routines, where the stable manifold associated with unstable nominal orbits
provides a nice way of maximizing time between maneuvers [6]. In the same fashion,
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paths in the plane of argument of periapsis and eccentricity that yield long lifetime
near polar orbits around Europa have been recently identified [7].

In this paper we take a different approach. Periodic orbits around Europa are
known to exist and have been previously used in the investigation of stability regions
around Europa [8, 9, 10]. Periodic orbits in the rotating frame are ideal nominal
repeat ground-track orbits that, for long enough repetition cycles, are suitable for
mapping missions. We compute low-altitude, near-circular, highly inclined, repeat
ground-track, unstable periodic orbits, and find that these kind of solutions enjoy
longer lifetimes1 than previously computed Europa science orbits. Our procedure is
based on fast numeric algorithms that are easily automated. The numerical search
for initial conditions of repeat ground-track orbits is very simple and feasible even for
higher order gravity fields [11, 12, 13].

For our search, we use a simplified dynamical model that considers the mean grav-
itational field of a synchronously rotating and orbiting moon, and take into account
the perturbations of the third body in the Hill problem approximation [14, 15, 4].
Tests on the validity of the solutions are made in an ephemeris model that includes
perturbations of the Sun, the other Galileans, the non sphericity of Jupiter, the other
gas giants, and a Europa gravity model that is consistent with synchronous moon
theory and NASA’s Galileo close encounters [16].

In passing from the simplified to ephemeris model we introduce a one dimensional
parameter scaling of the initial conditions that proved efficient in the past [9]. On
one side it provides a simple and feasible optimization for a given epoch. But it also
shows how isolated is the optimized solution in the ephemeris model, thus giving a
reasonable estimation of the robustness of the solution in the presence of realistic
perturbing forces.

With respect to the Europa gravity field, it turns out that the Galileo flyby data
cannot detect valid signatures for any gravitational terms for Europa beyond µ, J2,
and C2,2 [16]. Therefore, the true gravity field should be random noise centered
about a synchronous theory. We calculate ideal ratios between gravitational terms
for a synchronously rotating body, and a full field is based on the J2 calculated from
the Galilleo data. The only non-zero second degree terms are C2,2 = (3/10) J2, and
all terms above second degree are found to be insignificant.

Further, there is no physical reason to expect non-zero values for the Sn,m and Cn,m

spherical harmonic terms with n + m odd. Therefore, we have no reason to expect a
high Europa J3 value. However, based on observations of other celestial bodies and
purely random chance, it seems reasonable to speculate that Europa could be top or
bottom heavy [17], and previous studies have shown that J3 can play an important
role [17, 7, 18]. Therefore, we study the influence of J3 in the proposed orbits, and find
repeat ground-track orbits with higher eccentricities than the second order gravity
field solutions, but with similar lifetimes.

1Here, “lifetime” means the time it takes the orbiter to escape Europa or impact.
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Figure 1: Geometry of the model showing inertial (ξ, η, ζ) and rotating (x, y, z) frames.

DYNAMICAL MODEL

The restricted three-body problem retains the underlying dynamics that governs the
motion of an orbiter about planetary satellites (see Fig. 1). Close to the planetary
satellite its physical nature in terms of a gravitational harmonics expansion must be
considered. Further, the Hill problem can be used to model the planetary perturbation
on a satellite’s orbiter when the planet-satellite distance is sufficiently long. Then, in
the rotating frame of reference with origin at the center of mass of the satellite, using
Hamiltonian formulation we write

H = (1/2) (X ·X)− ω · (x×X)− (µ/r)−R(x) (1)

where x = (x, y, z) is the position vector of the orbiter, r = ||x||, X = (X,Y, Z) is the
vector of conjugated momenta —velocity in the inertial frame, ω is the angular veloc-
ity of the satellite around the planet, µ is the satellite’s gravitational parameter, and
the perturbing function R includes the third body and non-sphericity perturbations.

The Hamilton equations ẋ = ∇XH, Ẋ = −∇xH, of Eq. (1) provide

ẍ + 2ω × ẋ = −ω × (ω × x)− (µ/r2)∇xr +∇xR, (2)

equations of motion corresponding to a nonlinear dynamical system of three degrees
of freedom, yet accepting the Jacobi integral H(X, x) = h.

For synchronous orbiting and rotating planetary satellites, equilibrium theory ex-
pedites the representation of the satellite by a triaxial ellipsoid with matching orbital
and equatorial planes, and with the axes of smaller inertia pointing to the planet.
Then, the perturbing function is

R = (ω2/2) (3x2 − r2) + (µ/r) N(x). (3)

For the non-dimensional part N of the perturbing potential of the satellite, we con-
sider
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where α is the equatorial radius of the satellite, and J2, C2,2, and J3 are the har-
monic coefficients with physical meaning representing oblateness, ellipticity, and pear-
shapeness respectively. As we assumed equilibrium theory, we set C2,2 = (3/10) J2

[19]. Despite J3 is null in equilibrium theory, similarly to other celestial bodies Eu-
ropa could be top or bottom heavy. Therefore, we retain J3 in the simplified model
to investigate the modifications that it could introduce in specific solutions.

Averaging of Eq. (1) for different perturbing functions proved very useful in
studying the long term behavior around Europa [4, 20, 5, 7]. The main dynamics
close to planetary satellites corresponds to the Hill problem where circular orbits
suffer from instability for inclinations that depart the equatorial plane by more than
∼ 40◦ [21]. Perturbations due to the non-sphericity of the central body only introduce
minor qualitative changes in the long term dynamics [14, 15, 8, 5]. However, the
candidates for a Europa science orbit are among the unstable orbits. Thus, it is
essential to consider the short period dynamics in the search for long lifetime orbits [7].
It seems natural, then, to proceed directly with the non-averaged problem Eqs. (1–2),
where periodic orbits are the particular solutions that shall reach longest lifetimes.
This is the approach we take here. Periodic orbits around Europa indeed exist in
abundance, and have been previously used for a variety of dynamic applications at
Europa [8, 9, 10]. Thus, proceeding as in [8, 9], we search for periodic orbits of Eq.
(1) that satisfy the requisites of a science orbit about Europa.

FAMILIES OF PERIODIC ORBITS

Periodic orbits of Hamiltonian systems appear in families. The natural families of
periodic orbits occur for variations of the Jacobi constant, but other different families
exist for variations of any of the parameters of the problem. Starting from a given
periodic orbit, the whole family can be constructed with the Poincaré continuation
method [22]. The initial conditions of a given periodic orbit are normally continued
with differential correction algorithms that require the integration of the variational
equations, and, therefore, provide the stability of the orbit as a side effect (see, for
instance, [23, 24]). For the present study we have used the same predictor-corrector
procedure described in [25].

The stability of periodic orbits is related to the behavior of the variational equa-
tions. For conservative systems, variations in the tangent (velocity) direction do not
modify the periodic solution and, therefore, are trivial. Then, the stability character
of periodic solutions to Hamiltonian systems with three degrees of freedom as Eq. (1)
is obtained from two stability indices b1, b2, related to normal and binormal variations
[26]. The condition bi real and |bi| < 2 (i = 1, 2) applies for linear stability, while
any other possibility means instability [27]. Changes in the stability of a family can
be clearly appreciated using “stability curves” [28], where the stability indices are
represented as a functions of the parameter (or integral) generator of a given family.

Bifurcations of new families of periodic orbits can occur at critical values

b = 2 cos (2π d/n), (5)
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either for b1 or b2, where d and n are integer numbers [28] (see also [29], [30]). The
bifurcation occurs from a n-fold periodic orbit —the T -periodic orbit after a period
τ = n T . We call the planar critical orbits “d:n-resonant orbits” and “d:n-resonant
families” those that emerge from a d:n-resonant orbit.

In general, the variational equations are coupled. However, they uncouple for
planar motions where one index, b1, is related to intrinsic displacements in the normal
(in-plane) direction, and the other, b2, is related to perturbations in the binormal
(out-of-plane) direction.

THE RETROGRADE FAMILY

Hamiltonian Eq. (1) enjoys equatorial symmetry for J3 = 0, and periodic orbits exist
around the primary in the equatorial plane. Initial conditions (x0, 0, 0, 0, ñ x0, 0) and
period P0 = 2π/|ñ| in the Keplerian approximation ñ = ±

√
µ/x3

0−ω, are approximate
enough to be improved with differential corrections until finding an exact periodic
orbit of Eq. (1). Once computed a periodic orbit, the whole family can be continued
for variations of the Jacobi constant.

For the values of the parameters we used the most recent available data. Thus
we take α = 1565.0 km, and J2 = 4.355 × 10−4 from [31], while µ = 3202.7 km3/s2

retains the first five digits from the JUP230 solution [32], and ω = 2.0477×10−5 s−1 is
the average mean motion of Europa around Jupiter in JUP230 for 200 days starting
at January 1, 2025 (the epoch we used for ephemeris computations). We find it
convenient to use internal units of length and time such that α = µ = 1. In internal
units, approximate initial conditions of a grazing, equatorial, retrograde, periodic
orbit are (1, 0, 0, 0,−1.0224, 0), and period T = 6.14552.

Due to symmetries, the orbits of the family of near circular, equatorial, retrograde
orbits, that we call the retrograde family, orthogonally cross the x axis. Therefore,
“characteristic curves” ẏ0 = ẏ0(x0) can be used to represent the family [28]. Figure 2
presents the retrograde family in the vicinity of Europa (α < r < 2α). The stability
diagram in the right plot of Fig. 2 shows that equatorial, retrograde, near circular,
periodic orbits are always stable.
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Figure 2: The retrograde family close to Europa. Left: characteristic curve ẏ0 = ẏ0(x0);
units are km and km/s. Right: stability diagram; h is in internal units.
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FAMILIES OF 3-D PERIODIC ORBITS CLOSE TO EUROPA

For a given d:n resonance, we compute b2 from Eq. (5). Then, we search the ret-
rograde family until finding the orbit corresponding to the computed b2 value. This
orbit will be d:n-resonant —the spacecraft orbits Europa n times while Europa orbits
Jupiter d times— producing the bifurcation of a new family of three-dimensional pe-
riodic orbits that repeat themselves after (n − d) upward crossings of the equatorial
plane, or cycles2. Thus, for instance, b2 ≈ 1.97656 corresponds to the 1:41-resonant
orbit. Different types of vertical bifurcations can exist [33], and the vertically bifur-
cated families are easily computed.

We assume inclination limits 70◦ < i < 110◦ for the scientific mission, and assume
also that it requires an altitude close to one hundred km over the surface of Europa.
Therefore, we limit ourselves to computing the 1:42-, 2:83-, and 1:41-resonant families,
which, as Fig. 3 shows, can satisfy these requirements. Higher order resonances will
provide many other orbits satisfying those requisites.
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Figure 3: Averaged semi-major axis versus averaged inclination for the 1:42- (dotted),
2:83- (gray), and 1:41- (black) resonant families.

Figure 4 presents the stability diagrams of these three families in terms of the Ja-
cobi constant and averaged inclination. The three families are made of low-eccentricity
orbits with unstable character in the range of inclinations 49◦ < i < 133.5◦. Note that,
in every case, b1 remains with almost constant value inside the interval 75◦ < i < 105◦.
The higher b1 values of the 2:83-resonant family are associated to the the fact that
the orbits of this family have much longer period than the orbits of the other fam-
ilies. In what follows, we only present results for orbits of the 1:41-resonant family.
Experiments performed with orbits of the other families produced very similar results.

Figure 5 shows a sample orbit of the 1:41-resonant family with averaged orbital
elements a = 1683.217 km, e = 0.0009, i = 90.001◦. The evolution of the instanta-
neous orbital elements in one period is also presented, where two kinds of short period
effects are observed. One produces fast oscillations of the orbital elements with half

2Note that orbits pertaining to a d:n-resonant family are not resonant orbits except for the
bifurcation orbit.
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Figure 4: Stability diagrams of the 1:42- (dotted), 2:83- (gray), and 1:41- (black) resonant
families. Left: Jacobi constant h. Right: averaged inclination i.
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Figure 6: Long term propagation of the unstable, polar periodic orbit after 40 cycles. The
horizontal axis marks the surface of Europa. Left: ε < 10−11. Right: ε < 10−3.

the period between two consecutive upward crossings of the equatorial plane of the
periodic orbit; these oscillations scarcely affect the instantaneous inclination. These
small amplitude, very short period oscillations are modulated by an oscillation with
half the frequency of the periodic orbit, the smaller amplitudes corresponding to the
times where the orbital plane is perpendicular to the x-z plane.

Note that the periodic orbits are periodic only within certain numerical precision
ε = max|ξi(T ) − ξi(0)| (i = 1, . . . , 6), where ξi stands for any of the coordinates in
phase space. The periodicity error ε together with rounding errors play the role of
small perturbations in a long term propagation, where the orbiter enters the unstable
manifold of the unstable periodic orbit. Then, the exponential increase of the eccen-
tricity forces the orbiter to impact Europa. Figure 6 shows two sample propagations
for the polar orbit above. In the left plot the orbit remains periodic for almost one
year and delays the impact to Europa to more than 400 days. We started from a
periodic orbit with periodicity ε < 10−11 in internal units, that amounts to better
than one millimeter in position and 10−4 mm/s in velocity, that is highly unrealistic
from a practical point of view. The periodicity of the starting orbit used in the right
plot is of the order of 1 km in position and 1 m/s in velocity, and the lifetime reduces
to about 110 days.

The lifetime of the orbiter can be enlarged by taking initial conditions from the
stable manifold of the periodic orbit. A detailed study is in progress and results will
be presented elsewhere.

VARIATIONS OF J3

To investigate how the possible non uniform density of Europa affects the behavior
of the Europa science orbit, now we consider a pear-shaped Europa. We compute
families of periodic orbits for variations of J3 starting from the solutions above, and
assuming a limit value |J3| = C2,2. Figure 7 shows the stability diagram of the family
of polar periodic orbits after 40 cycles, for variations of J3. The index b2 is always
very close to b2 = 2 and is not presented. From Fig. 7 we conclude that J3 does not
worsen the stability behavior, in fact it sligthly improves. This is expected because
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Figure 7: Family of polar, periodic orbits after 40 cycles for variations of J3: b1 stability
curve.

the primary origin of the dynamical instability of high inclination orbits is the third
body perturbation on the central body attraction.

Figure 8 shows one period evolution of the instantaneous orbital elements of a
polar orbit of the 1:41-resonant family with J3 = 1.3784× 10−4, and averaged orbital
elements a = 1683.224 km, e = 0.02478, i = 89.9972◦, g = 270◦. As J3 breaks the
equatorial symmetry, low eccentricity periodic orbits no longer exist [2]. In agree-
ment to [7], we note that negative J3 values will produce low eccentricity orbits with
g = 90◦ whereas positive J3 values produce low eccentricity orbits with g = 270◦. Ex-
cept for having a higher value of the eccentricity, the instantaneous orbital elements
behave very similar to the J3 = 0 case, with the higher oscillations corresponding to
instantaneous retrograde inclinations.

Since the stability indices remain almost identical to the J3 = 0 case, we should
expect similar behavior in long term integrations. Compared to the J3 = 0 case, we
might expect faster accumulation of rounding errors due to the higher values of the
eccentricity —that we did not appreciate in our experiments. Figure 9 shows similar
examples to the case J3 = 0, where similar lifetimes are reached.
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Figure 8: One period evolution of the instantaneous orbital elements for a polar orbit
periodic after 40 cycles (J3 ∼ C2,2).
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EPHEMERIS MODEL

The ephemeris model is based on three publicly available estimated solutions for the
parameters, positions, velocities, and orientations of celestial bodies of interest (see
[34]). Namely, the JUP230 solution [32], based on Galileo data, for the parameters
and body states associated with the Jupiter system. The DE405 solution [35, 36]
for each of the major planets. And the pck00008.tpc file [37], primarily based
on the results from the IAU/IAG Working Group on Cartographic Coordinates and
Rotational Elements of the Planets and Satellites in 2000 [38], for the body orientation
information. The specific bodies and associated parameters used for all ephemeris
propagations in this study are included in Tables 1 and 2.

Body GM (km3/s2) GM source Position source
Io 5.959916033410404E+03 JUP230 JUP230
Europa 3.202738774922892E+03 JUP230 JUP230
Ganymede 9.887834453334144E+03 JUP230 JUP230
Callisto 7.179289361397270E+03 JUP230 JUP230
Jupiter 1.266865349218008E+08 JUP230 JUP230
Saturn 3.794062976400000E+07 JUP230 DE405
Uranus 5.794548600000000E+06 JUP230 DE405
Neptune 6.836534900000000E+06 JUP230 DE405
Sun 1.327132332402215E+11 JUP230 DE405

Table 1: Active bodies and gravitational parameters

Body Term Un-normalized value Source
Europa J2 4.355E−04 Ref. [31]
Europa C2,2 (3/10) J2 Sync. moon theory
Jupiter J2 1.469642900697847E−02 JUP230
Jupiter J3 −6.436411055625769E−07 JUP230
Jupiter J4 −5.871402915754995E−04 JUP230
Jupiter J6 3.425025517100406E−05 JUP230

Table 2: Non-zero spherical harmonic coefficients for the active bodies

For a given epoch, the inertial directions of the instantaneous Jupiter-Europa
vector ρ = rE − rJ and the system angular momentum h = ρ × (vE − vJ) are
used to define a coordinate rotation to the ephemeris system. Vectors r and v are
position and velocity in the ephemeris system, while subscripts E and J stand for
Europa and Jupiter respectively. Thus, the mapping F : (x, ẋ) −→ (r, v) from the
rotating, Europa centered frame to the inertial frame with origin at the baricenter of
the Jupiter system is

r = rE + R x, v = vE + Ṙ x + R ẋ (6)
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where the elements of the rotation matrix R = (ux, uy, uz) are

ux = ρ/||ρ||, uz = h/||h||, uy = uz × ux

Once we passed from the simplified model to the true (ephemeris), long term
propagations of the initial conditions will provide the real lifetimes of the selected
orbits. Note, however, that the ephemeris runs are attached to a given epoch, and so
are the conclusions regarding lifetimes. To test the general validity of the lifetimes
we could make a variety of runs for different epochs. We prefer to proceed distinctly:
we perform all the ephemeris runs for a fixed epoch (January 1, 2025) and use a one
dimensional scaling parameter k that proved very useful in the past [9].

The k-scaling in the range 0.97 < k < 1.03 accounts for variations in the distance
from Europa to Jupiter —on the order of a few percent of its nominal value— pro-
duced by the non-zero eccentricity of the orbit of Europa and slight perturbations in
semi-major axis. Then, after the transformation from Eq. (6), we scale the initial
state to

x′ = k x, ẋ′ = ẋ
√

1/k, (7)

where the nonlinear scaling of the velocity results from assumming Europa maintains
its circular velocity although the Jupiter-Europa distance is slightly scaled. Conse-
quently, assumed it remains periodic, the period of the scaled spacecraft orbit should
be T ′ = T

√
k3. After each scaling for a given k we perform the propagation and plot

the resulting lifetime τ .
Figure 10 presents results for the J3 = 0 case corresponding the 40 cycle periodic

orbit for different inclinations. Lifetimes τ average to about four months with peaks
of more than six months, where the best results side with the polar orbits. The plot
at the top corresponds to the k-scaling of initial conditions (x, 0, 0, 0, ẏ, ż), while at
the bottom the initial conditions are close to the y axis. Table 3 provides initial
conditions of the several periodic orbits in the simplified model.

i (deg) x (km) ẏ (km/s) ż (km/s) Period (days)
100 1690.689890962806 −0.2954850833646089 −1.352955033637386 3.576074029604334
90 1682.559086494749 −0.5671495124122091 −1.381021094488744 3.550476907604339
80 1674.566451069315 0.1845444542009359 −1.367096125801892 3.525113167610515

Table 3: Initial conditions of several 40-cycle periodic orbits (y = z = ẋ = 0, J3 = 0)

The case k = 1 typically results in repeat ground-track orbits of the ephemeris
model, where the ground trace doest not drift substantially from its nominal value.
However, the lifetime optimization provided by the k-scaling normally destroys the
repeat ground trace condition (see Fig. 11). This lack of repeating ground tracks may
in fact be preferred from a mapping perspective because it provides a more complete
global surface coverage.

Figure 12 shows similar results for the J3 ∼ C2,2 case, where we note that the
lifetimes are not significantly affected.
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Figure 10: Ephemeris runs corresponding to periodic orbits after 40 cycles in the simplified
model (J3 = 0). Initial conditions on the x axis (top), and close to the y axis (bottom).

Figure 11: Three month propagations in the ephemeris model (i = 90◦, J3 = 0, initial
conditions on the x axis). Left: repeat ground-track orbit after 40 cycles with a lifetime of
128 days. Right: lifetime of 163 days without repetition of the ground track.
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Figure 12: Ephemeris runs for J3 ∼ C2,2. Initial conditions close to the x axis (top), and
the y axis (bottom).

Note that the curve τ = τ(k) provides a reasonable estimation of the robustness of
the solution, i.e., how sensitive is it to initial conditions in the ephemeris model. Fur-
ther, the one dimensional k-scaling can be seen as a feasible optimization of the initial
state —that allowed us to find orbits with lifetimes of six months in the ephemeris
model. We must emphasize that the k-scaling does not optimize a random choice
of initial conditions for a science orbit, that typically produce orbits with lifetimes
shorter than one month.

Because the ephemeris model contains many perturbations that are unaccounted
for in our simple model, we find it difficult to predict what values of k will lead to the
longest lifetime orbits. However, by picking an epoch and performing an educated
one-dimensional search, we present a simple method for demonstrating and finding
long lifetime ephemeris solutions with the underlying assumption that the ephemeris
force model is known. Although, we believe the force model considered in this study
will capture the first order dynamics of a close orbiter around Europa, the remaining
challenge is to consider the effect of the higher order terms, such as the full gravity
field at Europa, that are certainly non-zero but will remain unknown until after a
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science orbit is achieved.

CONCLUSIONS

The computation of periodic solutions of a Hill perturbed problem reveals as a ver-
satile and fast procedure for searching for long lifetime repeat ground-track orbits
around Europa. Close to Europa, the repetition cycle is long enough to satisfy the
requirements of a science orbit.

The simplified model retains the underlaying dynamics governing the motion close
to Europa. Notably, we have found science orbits lasting more than six months in the
ephemeris model. Further, our solutions are quite robust, and the lifetimes average
to about four months in a wide region around the optimum set of initial conditions.
These lifetimes are consistent with previous ephemeris studies. A detailed study of
the stable-unstable manifolds associated to the periodic solutions of this paper is in
progress, and it could provide initial conditions for science orbits even with longer
lifetimes. However, because of radiation it is questionable that the spacecraft will
survive more than six months around Europa.

We only consider a second order gravity field although perturbations from other
harmonics will probably exist. However, the instability that affects high inclination
orbits has its dynamic origin in the third-body perturbation. Therefore, perturbation
from gravitational harmonics of order higher than two should only affect the shape of
the orbit, producing negligible effects on stability. Experiments with different values
of J3 support this hypothesis.

The one dimensional scaling we used in the ephemeris model might also be useful
answering two questions that have not been addressed in previous analytic studies.
Namely, given analytic derived initial conditions in a simpler dynamical model, how
long can we expect the same orbit to last in a true ephemeris. And how isolated is
the longest lifetime orbit, or how large is the radius of the long-lifetime phase space.
Both of these are very practical questions that the anticipated Europa Orbiter project
will certainly ask.
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