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DESIGNING CAPTURE TRAJECTORIES  

TO UNSTABLE PERIODIC ORBITS AROUND EUROPA* 
 

Ryan P. Russell† and Try Lam‡ 
 

The hostile environment of third body perturbations restricts a mission designer’s ability to 
find well-behaved reproducible capture trajectories when dealing with limited control 
authority as is typical with low-thrust missions.  The approach outlined in this paper 
confronts this shortcoming by utilizing dynamical systems theory and an extensive pre-
existing database of Restricted Three Body Problem (RTBP) periodic orbits.  The stable 
manifolds of unstable periodic orbits are utilized to attract a spacecraft towards Europa.  By 
selecting an appropriate periodic orbit, a mission designer can control important 
characteristics of the captured state including stability, minimum altitudes, characteristic 
inclinations, and characteristic radii among others.  Several free parameters are optimized 
in the non-trivial mapping from the RTBP to a more realistic model.  Although the 
ephemeris capture orbit is ballistic by design, low-thrust is used to target the state that leads 
to the capture orbit, control the spacecraft after arriving on the unstable quasi-periodic 
orbit, and begin the spiral down towards the science orbit.  The approach allows a mission 
designer to directly target fuel efficient captures at Europa in an ephemeris model.  
Furthermore, it provides structure and controllability to the design of capture trajectories 
that reside in a chaotic environment.  
 

 
INTRODUCTION 
 

Typical science orbits at Europa require close proximity to the surface and high inclinations to 
provide global coverage for mapping purposes.  Capturing directly to these orbits using low-thrust is 
impossible because of the forbidden regions associated with the dynamics of the RTBP.  A capture trajectory 
with limited control authority is thus restricted to higher altitude orbit insertions.  Furthermore, a host of 
recent studies have re-emphasized that the high-inclination mapping orbits are unstable [1,2,3,4,5], and 
increasingly so at the higher altitudes where low-thrust captures are feasible. 
 

Distant Retrograde Orbits (DROs) exist in the ephemeris model at Europa well beyond 50,000 km 
and are extremely stable when the out of plane motion is small [4].   As a result, a typical and rather straight-
forward approach for designing a capture orbit at Europa follows the path of inserting into a near-planar 
DRO and then systematically changing the characteristic radius and inclination until a science orbit is 
achieved [6,7,8].  Although this approach is inherently less risky, it can be costly both in time and fuel [8].  
Thus, we proceed by outlining a capture technique that provides mission designers the improved ability to 
target a variety of close highly-inclined capture orbits with little thrusting capabilities even in the highly 
unstable regions of the design space.   

 
Recent applications of dynamical systems theory to the multi-body astrodynamics problem have led 

to a new paradigm of trajectory design [9,10,11,12,13,14,15,16].  From this perspective, trajectories exploit 
natural unstable dynamics to efficiently navigate through chaotic regions in phase space [17].  The perturbing 
effects of a secondary gravitating body in the vicinity of a spacecraft and a primary body can be utilized to 
capture or escape the primary using little or no fuel.  These attracting or repelling trajectories comprise a 
stable or unstable manifold of orbits, respectively.  The set of these manifolds mapped for the many attracting 
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bodies in the Solar System comprise what is commonly referred to as the Interplanetary Superhighway [18].  
The paths of these manifolds trace chaotically through the solar system, and intersections of two manifolds 
provide mechanisms to ballistically connect two seemingly isolated regions [19].  These concepts have been 
successfully demonstrated in flight missions such as ISEE-3 (International Sun-Earth Explorer-3), ACE 
(Advanced Composition Explorer), SOHO (SOlar and Heliospheric Observatory), and Genesis among others 
[20,21,22,23,24]. 

 
Although the manifolds associated with the halo family have been the focus of the most recent 

applications in this area, there are scores of other families of periodic orbits and associated invariant 
manifolds that have received much less attention.  In this paper, we tap into this potential by using an 
extensive database  of previously computed periodic orbits in the vicinity of Europa as attracting mechanisms 
for capture [25].   The structure of the manifolds [26] of these more complicated orbits is much more erratic 
in general than the manifolds that emanate from the simple Halo orbits and constitute the bulk of the 
Interplanetary Superhighway (or for the case of Europa the Intermoon Superhighway).  Perhaps the 
individual trajectories that make up the complicated manifolds are more akin to one-lane county roads than a 
superhighway; nonetheless, they are capable of providing efficient ballistic captures to orbits with specific 
selected characteristics.  While the halo orbits manifolds can certainly be used to initiate capture orbits at 
Europa [8], powered maneuvers (albeit small) are necessary to complete the capture.  Furthermore, the 
unstable nature of the orbits makes it difficult for a mission designer to control the final characteristics of the 
capture state.  By utilizing the manifolds of the capture orbit directly, the natural dynamics are exploited to 
allow the spacecraft to coast to its capture state rather than taking the traditional path of fighting the 
dynamics with thrusting.  Note that thrusting is reserved for changing orbital energy and controlling the 
spacecraft once it arrives on the quasi-periodic ephemeris orbit. 

 
The first section of this paper gives an overview of the relevant dynamics and models.  The next 

section outlines the algorithm to systematically design a capture orbit at Europa using limited control 
authority.  The initial conditions of several promising attracting periodic orbits are presented along with the 
characteristics of the associated stable manifolds.  Although all of the attracting orbits are unstable by design, 
some of the examples are selected because of their proximity to a recently observed class of direct near-
circular periodic orbits that are stable at surprisingly high inclinations [25,27].  The subtleties associated with 
mapping these simple model manifolds into a realistic model are explored and a variety of parameters are 
introduced and optimized to ensure continuous ballistic captures in the full ephemeris model.  Finally, we 
walk through an example application of a low-thrust transfer from Ganymede to a captured state at Europa, 
and conclusions are drawn in the final section.   

 
The capture technique is efficient in terms of spacecraft fuel because it allows for the design of 

close, highly-inclined captures thus reducing the need for expensive plane changes to achieve near polar 
science orbits.  Furthermore, the technique reduces design time because it is systematic and provides 
controllability over the qualities of the capture state despite the generally chaotic dynamic environment.   
 
DYNAMICAL MODELS AND BACKGROUND  
 
 Relevant background and model information is presented for periodic orbits and manifolds in the 
context of both the RTBP and a realistic ephemeris model. 
 
RTBP Equations of Motion 
 
 The equations of motion for a non-thrusting spacecraft in the Restricted Three Body Problem are 
presented in Equation (1) in the standard rotating frame that assumes Europa and Jupiter orbit their common 
center of mass with a constant separation of 1 length unit (LU) and an orbital rate of 1 radian per time unit 
(TU).  The coordinate frame is centered at Europa, the x axis points along the Jupiter-Europa line, and the z 
axis points toward the system angular momentum.  The spacecraft distances to Europa and Jupiter are 
denoted as rE and rJ respectively.  The gravitational parameters for Europa and Jupiter are GmE and GmJ 
respectively.   
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The Jacobi constant is an integral of motion and exists in the form given in Equation (2).  Therefore, 
in the RTBP the Jacobi constant or energy of a spacecraft can only be changed via thrusting.  For the 
unthrusted case at a fixed value of J and velocity of zero, Equation (2) can be solved for a surface in position 
space that represents the boundary between valid and forbidden regions for the spacecraft.  This is known as 
the zero-velocity surface and is illustrated in Figure 1.  The neck seen in part (d) is known as Hill’s neck.  
When its radius shrinks to zero, ballistic transfers to and from the vicinity of Europa are no longer possible.  
Thus an upper bound is established for the Jacobi energy for potential transfer orbits (~3.0036 LU2/TU2).  
This upper bound on Jacobi energy maps to a lower bound on capture orbit altitudes.  For inclined near-
circular orbits, this equates to approximately a 5,000 km orbit around Europa [27]. 
 

 
Figure 1:  Zero velocity surfaces for Europa.  The surfaces are sliced in order for Europa to be visible.  
The valid regions are near Europa.  Note the closing of the neck from (d) to (e). 

 
For the thrusting case, the spacecraft mass becomes a state variable and is governed by Equation (4).  

The thrust acceleration term in Equation (4) must be included in the velocity derivative terms given in the 
last three entries of f in Equation (1).  Note that Γ is the rocket thrust magnitude and the product g0Isp is the 
rocket exhaust velocity where Isp is given in units of time and g0 is the acceleration of gravity at the surface 
of Earth.  
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( )0/dm dt g Isp= −Γ  
(3) 

x y z m = Γ Γ Γ Γ
T

 
(4) 

 

Table 1:  Jupiter Europa RTBP parameters 
Parameter Symbol  Value Comment 
Europa gravitational 
parameter 

GmE 3202.72 km3/sec2 Reference [28] 

Jupiter gravitational 
parameter 

GmJ 1.2668654 x 108 km3/sec2 Reference [28] 

Jupiter-Europa distance 
(length unit) 

LU 670,900 km Reference [28] 

Europa mean radius  - 1560.7 km Reference [28] 
Mass ratio µ 2.52800260797625 x 10-5 Calculated from Equation (1) 
Time Unit TU 48822.0443306681 s Calculated time for Europa to traverse one radian.  Based on 

circular velocity at the Europa mean radius 
Velocity Unit VU 13.7417432882581 km/s Length unit divided by time unit 
 

 
Attracting and Repelling Periodic Orbits  
 
 We proceed with a brief discussion on the stability of periodic orbits and an explanation why 
unstable periodic orbits share attracting and repelling qualities.  A small pertubation δX(t0) to the initial 
conditions of a ballistic reference trajectory X* is linearly mapped forward to a perturbation at a later time 
with the well known state transition matrix, Φ.   

0 0( ) ( , ) ( )t t t tδ δ=X Φ X  (5) 
 The state transition matrix is obtained by integrating the variational equations given in Equation (6).   
For a detailed derivation, see for example References  [25] and [29]. 
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 For the unthrusted RTBP, the partial derivative required in Equation (6) is given in Equation (7). 
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The state transition matrix evaluated after a full period, t=T, of a periodic orbit is commonly called 

the Monodromy matrix [30].  It maps an initial state perturbation vector across one full period.  The norm of      
this matrix is defined by Equation (8) [31]. 
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 If the norm is greater than 1, perturbations will tend to grow and trajectories will repel the reference 
periodic orbit.  Likewise, if the norm is less than 1, perturbations will tend to damp out and trajectories will 
be attracted to the reference orbit.  The norm of a matrix is associated with the direction of greatest 
amplification or the most unstable direction.  However, the basis of a six dimensional space consists of six 
directions, where each direction can be stable, unstable, or neutral.  The generalized eigen-vectors provide a 
convenient basis to evaluate all six directions.  An eigenvalue, λ (real or complex), of the Monodromy matrix 
is a scalar proportionality factor that satisfies the relation: 

 

0( , )T t λ=Φ ξ ξ  (9) 
 

Thus for an eigenvalue with a magnitude greater than unity, perturbations in the eigen-direction, ξ , 
will grow after one period, and the orbit is unstable in this direction.  It is well known that the eigenvalues of 
the Monodromy matrix occur in reciprocal pairs [32].  Additionally, for the RTBP, one of the eigenvalues 
will be unity due to the existence of the Jacobi integral [30, 32].   The eigenvalues of the Monodromy matrix 
for the three-dimensional RTBP will therefore have the form {λ1, 1/λ1, λ2, 1/λ2, 1, 1}.  Thus, if a periodic orbit 
has an eigen-direction that leads to an expansion, then there is also an accompanying eigen-direction that 
leads to a contraction.  Therefore, all eigenvalues must have a magnitude of 1 for stability in all six 
directions, and lastly, all unstable periodic orbits have directions that lead to both attracting and repelling 
trajectories.   
 
 A stable or unstable manifold is comprised of trajectories that approach or leave in forward time a 
periodic orbit in the direction of a stable or unstable eigen-direction respectively.  From Equation (9), it is 
clear that the degree of stability or instability is reflected in the magnitude of the associated eigenvalue, 
where values less or greater than unity are increasing stable or unstable respectively.  While the unstable 
manifolds are equally useful for general mission design, the remainder of this study focuses on the stable 
manifolds and their application to capture orbits.  
 
Ephemeris Model Considerations 
 
 The RTBP model is convenient because it enables fast numerical analysis and accurately represents 
to first order the motion of many real three-body systems.  In addition, its autonomous Hamiltonian nature 
leads to many niceties including the abundant existence of periodic orbits, the availability of an integral of 
motion, and a simplified Monodromy matrix.  However, in general, the difference between the RTBP and a 
more realistic model is non trivial; and surprisingly, a small percentage of astrodynamic applications to 
dynamical systems theory include this final step of finding the trajectories in a full ephemeris model.  In this 
paper, we pay careful attention to the ephemeris model by optimizing over several mapping parameters such 
that the final capture orbits are ballistic in the realistic model.  
 

The typical approach for continuing a RTBP solution to the ephemeris model involves breaking the 
trajectory into several legs and mapping the initial conditions for each leg to the ephemeris model.  Next, a 
multiple shooting method is implemented using a differential corrector and/or optimizer to drive the 
ephemeris model legs towards continuity[16].  This process is increasingly difficult for long and complicated 
trajectories and there is no guarantee that a completely ballistic ephemeris trajectory exists, especially in 
cases where the physical models are not as well represented by the assumptions of the RTBP.  This common 
approach preserves the trajectory shape even for highly unstable orbits.   
 

We take an alternative approach that does not necessarily preserve the trajectory shape, but removes 
the necessity for multiple legs and ensures continuity, i.e. a ballistic capture.  Note that a captured state in this 
context is a loosely defined term meaning that the spacecraft is on an ephemeris version of a ballistic 
attracting trajectory associated with the stable manifold of the RTBP periodic orbit.  Depending on the 
stability characteristics of the attracting periodic orbit, the spacecraft, if left uncontrolled, will typically 
complete on the order of a few revolutions around Europa before falling off the periodic orbit on one of its 
unstable manifolds.  It is possible to design an active control scheme for orbit maintenance to keep the 
spacecraft in the vicinity of the reference orbit.  The active control strategy is appropriate if the attracting 
periodic orbit is part of a mapping orbit or indefinite parking orbit that is explicit to the mission design.  
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However, in the case of the present application the attracting periodic orbit is employed only as a mechanism 
to achieve some intermediate captured state near Europa with important but loosely defined qualities, such as 
characteristic radii, inclination, and minimum and maximum altitudes.  It is not critical that the final 
ephemeris capture trajectory be exactly analogous to its cousin orbit in the RTBP.  Rather, it is only 
important that the qualities are similar and that the ephemeris attracting trajectory is ‘well-behaved’ meaning 
it is somewhat robust to small perturbations and it does indeed ballistically follow a stable manifold towards 
a captured (albeit unstable) state at Europa. 
 

The proposed mapping from a normalized RTBP state to a dimensioned state in the true ephemeris 
consists of two steps:  First, un-normalizing the state in the RTBP and second, doing the appropriate rotations 
to a non-rotating inertial state.  Typically, the normalized RTBP position and velocity vectors are 
dimensioned using the length unit (LU) and velocity unit (VU) given in Table 1.  We propose a slight 
variation that provides a degree of freedom in the mapping.  The distance from Jupiter to Europa in reality 
varies on the order of a few percent of its nominal value.  Among many of the non-autonomous forcing 
functions that drive a real ephemeris, this pulsating feature of the radius introduced by a non circular orbit is 
the largest perturbation to the assumptions of the RTBP.  The length unit from Table 1 represents the average 
value of this pulsating radius.  However to account for the few percent in variation, we introduce a k scaling 
factor in Equation (10) that provides new length units, time units, and velocity units for a RTBP system with 
a slightly modified characteristic length.  The time and velocity units do not scale linearly because they are 
derived from the length unit.  By varying k from 0.97 to 1.03, the resulting dimensioned states are scaled 
appropriately for positions and velocities.  The variation is well within the noise of the ephemeris 
perturbations, and this scaling factor provides a convenient one dimensional degree of freedom that can be 
very useful in constrained problems such as the present case of searching for ballistic ephemeris capture 
trajectories.  The k scaling technique has proven useful in References [27] and [33]. 

( ) ( ) ( )* * 3 *LU LU             TU TU               VU 1 VUk k k= = =  
(10) 

 
 Once Equation (10) is used to un-normalize a state for a given k value, the inertial directions of the 
instantaneous Jupiter-Europa line and the system angular momentum are used to define a coordinate rotation 
to the true ephemeris.   Equations (11) and (12) provide the mappings for position and velocity vectors.  The 
superscript indicates an un-normalized vector in the RTBP and the subscripts E and J refer to Europa and 
Jupiter respectively.  It is assumed that the ephemeris velocity of Europa with respect to Jupiter is the time 
derivative of the ephemeris position (although the position and velocities may in fact be estimated 
independently leading to a minor violation of this principle).  We also assume that the angular momentum 
vector, hEJ, is a constant although this is not true in general.     
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The ephemeris positions, velocities, and orientations of the planets and moons are provided by the 

DE405, jup230, and pck00008.tpc estimated solutions and are publicly available† from the Jet Propulsion 
Laboratory[34].   The body poles and prime meridians are based on the most recent data from the IAU/IAG 
                                                           
† URL: http://naif.jpl.nasa.gov/naif/spiceconcept.html [cited 8 Oct 2005]. 
URL: ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/satellites/jup100.bsp [cited 8 Oct 2005]. 
URL: ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de405_2000-2050.bsp [cited 8 Oct 2005]. 
URL: ftp://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/pck00008.tpc [cited 8 Oct 2005]. 
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Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites [35].  
Table 3 gives the gravitational parameters for all of the active bodies for the ephemeris model in this study.  
Table 2 provides the gravity fields terms for Jupiter and Europa based on the standard spherical harmonic 
expression of the potential [36].  Although this study focuses primarily on finding the initial conditions that 
lead to ballistic capture states, the final targeting and optimization is performed with Mystic, a high-fidelity 
low-thrust optimization tool under development at the Jet Propulsion Laboratory [37]. 
 

Table 2: Ephemeris model active oblateness parameters 
Body Term Normalized a Value b 
Jupiter Gm (km3/sec2) - 1.26686537.857796E+08 
Jupiter Radius (km) - 7.149200000000000E+04 
Jupiter J2 no 1.469642900697847E-02 
Jupiter J3 no -6.436411055625769E-07 
Jupiter J4 no -5.871402915754995E-04 
Jupiter J6 no 3.425025517100406E-05 
Jupiter C22 no 6.529032795399768E-09 
Jupiter S22 no -1.249373515670649E-08 
Europa Gm (km3/sec2) - 3.200999806720590E+03 
Europa Radius (km) - 1.562700000000000E+03 
Europa J2 yes 1.921114544207288E-04 
Europa J3 yes -7.039660444099072E-05 
Europa C21 yes 1.151627764866707E-07 
Europa C22 yes 2.000074134884866E-04 
Europa C31 yes -3.196687887816629E-05 
Europa C32 yes -1.130987507887575E-05 
Europa C33 yes -3.735793516136421E-06 
Europa S21 yes 1.151627764866707E-07 
Europa S22 yes -4.617239150205956E-06 
Europa S31 yes -2.362087547330383E-05 
Europa S32 yes -3.906571822592933E-06 
Europa S33 yes 6.497673093152606E-06 
b See Reference [36] for the standard normalization for spherical harmonic terms  

a Parameters come from Mystic default files.  Note, the Europa Gm, J2, and C22 are 
based on Galileo data, the other gravity terms are simply representative of an 
expected field.  
  

Table 3:  Ephemeris model active bodies 
and gravitational parameters 

Body Value (km3/sec2) Ephemeris 
Sun 132712440017.987 DE405 

Mercury 22032.0804864179 DE405 
Venus 324858.59882646 DE405 

Earth 398600.432896939 DE405 

Moon 4902.80058214776 DE405 

Mars 42828.3142580671 DE405 

Jupiter See oblate Jupiter 
parameters from Table 2 

jup100 

Saturn 37940626.0611373 DE405 

Uranus 5794549.00707187 DE405 

Neptune 6836534.06387926 DE405 

Io 5961.00007464437 jup100 

Europa See oblate Europa 
parameters from Table 2 

jup100 

Ganymede 9886.99742842995 jup100 

Calliso 7180.99840324153 jup100 

    

 
BALLISTIC CAPTURE ALGORITHM 
 
 In this section, an algorithm is described to obtain the initial conditions that lead to a ballistic 
capture orbit with user defined characteristics.  It is assumed that we begin with a trajectory that approaches 
Europa with appropriate energy and positioning such that a ballistic capture is feasible.  Obtaining such a 
trajectory is non-trivial, but attainable via successive resonant flybys of Europa and limited control authority 
typical to low-thrust or fuel-limited missions [37].   
 
1. Select a target RTBP Periodic Orbit 
 

As a result of the chaotic nature of the RTBP, a trajectory that approaches Europa in the 
neighborhood of a ballistic capture orbit can be altered dramatically with small changes in the upstream state.  
This sensitivity can be exploited to capture directly to orbits with dramatically different characteristics for 
very small fuel expenditures.  We achieve this by carefully selecting attracting unstable periodic orbits that 
have qualities consistent with a desired capture state.  For the case of the Jupiter-Europa system, Reference 
[25] archives over 616,000 periodic orbits with a variety of defining characteristics.   Most of the solutions 
are unstable and thus have stable manifolds that are candidates for capture orbit applications.  The defining 
qualities associated with each solution include the Jacobi constant, period, characteristic inclination, 
characteristic radius, minimum altitude, maximum altitude, ratio of the minimum to maximum altitude, and 
number of xz plane crossings among others.  A database of the solutions is established such that a mission 
designer can filter all of the characteristics to find a periodic orbit or a range of periodic orbits that are 
suitable candidates for attracting mechanisms to Europa.♣   
                                                           
♣ For an electronic copy of the Europa Periodic Orbit Database, send an email request to Ryan.Russell@jpl.nasa.gov.  Otherwise, all 
differential correctors and methods to recreate such a database are described in Reference [25]. 
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For capture applications with mapping orbit destinations, the most appealing periodic orbits are 

those that are close to Europa, have large characteristic inclinations, and have a minimum to maximum 
altitude ratio near unity.  Other families of orbits such as the Halo, Lisajous, Lyaponov, or combination 
families have potential application for capture and other trajectory design; however, in this study we restrict 
our focus to periodic orbits that resemble high-altitude mapping orbits in order to minimize the complexity 
and cost of spiraling down from the ballistic capture state to the final low-altitude highly inclined, near 
circular science orbit.  Figure 2 illustrates a sampling of unstable highly-inclined periodic orbits that 
continuously orbit Europa at Energy levels that are feasible for ballistic capture.   Table 4 gives the initial 
conditions and characteristics for each orbit.  The solutions are generated using the mass ratio given in Table 
1.  The direct orbits in Figure 2(c-f) are specifically chosen due to their proximity to a class of highly-
inclined stable periodic orbits recently identified in References [25] and [27].  Despite the instability of the 
orbits in Figure 2(c-f), it is hoped that the proximity to stable regions will reduce the amount of control 
authority necessary to fight the perturbations as the spacecraft spirals down to a science orbit. 

 

 
Figure 2: Representative set of unstable periodic orbits around Europa.  These orbits act as 
attracting mechanisms useful for designing capture orbits for mapping missions.  Each orbit 
is illustrated from 4 viewing angles.  From left to right:  viewed from 1) negative y axis,  2) 
positive x-axis, 3) positive z axis, 4) azimuth=-130ο, elevation=40ο.  
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Table 4: Initial conditions and characteristics of orbits illustrated in Figure 2a 

ID #xz plane  
crossings 

x0  
(km) 

v0 
(km/s) 

w0 
(km/s) 

T 
(days) 

J 
(AU2/TU2) 

inc.b 

(deg) 

min 
altitude 

(km) 

ratio of  
min:max  
altitude 

ρ c 

1417161 8 -9872.93624 0.56390318 0.53604013 4.10426372 3.00079 43.5 8312 0.78 65.06 
1426791 8 -7266.22483 0.15356112 0.76160114 3.45364150 3.00173 78.6 5706 0.67 36.69 
1486948 4 5544.95918 0.10589302 0.85387058 3.07597199 3.00230 82.9 3984 0.43 126.07 
1524871 6 7240.72449 0.03137750 0.69425009 3.41027619 3.00237 87.4 5319 0.76 13.50 
1541493 16 8069.76531 0.13751733 0.60543800 9.90252597 3.00249 77.2 3874 0.49 85.60 
1551345 4 8547.09184 0.14836010 0.63273862 3.14369851 3.00211 76.8 2406 0.23 10.71 

a Any parameter expressed in un-normalized units is obtained using the length and velocity transformations given in Table 1.  Note y0 = z0 = u0 = 0. 
b characteristic inclination, range is between 0 and 90ο, equal to tan-1(w0 / v0).   
c ρ is a scalar metric of instability.  Larger values indicate increasing instability.  For linear stability, ρ=1.   

 
 
2. Calculate the Stable Manifolds in RTBP 
 

Once a specific attracting periodic orbit is selected, the stable manifolds are calculated using the 
stable eigen-directions of the Monodromy matrix as discussed in an earlier section.  In Equation (13), a time-
like variable, τ, is introduced that varies from 0 →1 and parameterizes the periodic orbit across one full 
period, where tτ is the time associated with a specific τ, T is the period, and t0 corresponds to a reference state 
on the periodic orbit.    

0t t Tτ τ= +  (13) 
 
The Monodromy matrix, Φ(T, t0),  is integrated once for the reference state, X(t0), and its 

eigenvalues, λi, and eigenvectors, ξi, are calculated.  Two of eigenvalues are unity.  Because the remaining 
four exist as two sets of reciprocal pairs, two of the eigenvalues will have magnitudes less than unity 
indicating stability.  To proceed, we choose one of the stable eigenvalues.   

 
The eigenvector associated with the chosen stable eigenvalue is the six-vector direction associated 

with one of the stable manifolds of the periodic orbit.  This six-vector can be mapped to a different location 
along the orbit using the state transition matrix as shown in Equation  (14). 

0( , )t tτ τ=ξ Φ ξ  (14) 
 
The trajectory on the stable manifold that approaches the periodic orbit at a given τ is approximated 

by integrating backwards in time the conditions given in Equation (15), where ε is a normalized scalar that 
perturbs the state in the direction of the stable eigenvector.   

 
( ) ( )' ( ) ( ) τ ττ ε τ= + ℜ ℜX X X ξ ξ

 
(15) 

 
The approximated stable manifold then is the set of all trajectories integrated backwards from 

Equation (15) for τ = 0 →1.  As mentioned in an earlier section, the stable manifold from a halo orbit 
maintains its tube-like structure at great distances and times from its parent orbit.  In such cases, the detailed 
selection of the perturbing ε values has little effect on the structure of resulting manifold.  However, in the 
case of high resonant periodic orbits of interest to this study, the manifolds are not well behaved in general 
and the selection of the perturbation size can have a significant effect on the behavior and structure of the 
attracting trajectories.    
 

Table 5 gives a summary of the four parameters available for a mission designer to adjust when 
generating the attracting trajectories to a specific periodic orbit in the RTBP.  Although unnecessary for 
capture applications, the generation of the unstable manifolds uses the unstable eigenvectors and integrates 
forward in time, but otherwise follows an identical procedure. 
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Table 5: Parameters for generating a stable manifold in the RTBP   

Parameter Comment 
λ1 or λ2  Must choose one of the two stable eigenvalues to obtain the eigenvector for manifold calculation. 
ε The scalar perturbing multiplier for eigen-direction.  Can be positive or negative 
τ The time-like variable that parameterizes the periodic orbit.  Can take any value from 0 →1.   

Choosing the whole range of τ for a given λ and ε allows for the generation of the full manifold. 

 
 
Figure 3-Figure 8 illustrate a set of attracting trajectories for each of the periodic orbits from Figure 

2 for ten equally spaced τ values.  Because of xz-plane symmetry, the τ values only vary from 0 → ½.  The 
associated stable eigenvalue is displayed along with the chosen value of ε.   

 
 

 
Figure 3: Top view of RTBP capture trajectories to periodic orbit in Figure 2a 

 
 

 

 
Figure 4: Top view of RTBP capture trajectories to periodic orbit in Figure 2b 



 11/20 

 
Figure 5: Top view of RTBP capture trajectories to periodic orbit in Figure 2c 

 
 

 
Figure 6: Top view of RTBP capture trajectories to periodic orbit in Figure 2d 

 
 

 
Figure 7: Top view of RTBP capture trajectories to periodic orbit in Figure 2e  
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Figure 8: Top view of RTBP capture trajectories to periodic orbit in Figure 2f 

 
The example manifolds in Figure 3-Figure 8 are calculated using the smallest and therefore the most 

stable eigenvalue for each of the example orbits.  In general, the value of ε is selected to be sufficiently small 
such that the linear region associated with the state transition matrix is not violated, but sufficiently large 
such that the trajectory departs (in backwards time) the vicinity of the periodic orbit in a reasonable time 
[14,16].  The radius of the linear region where the state transition matrix well approximates the dynamics 
scales indirectly with t-t0 (and directly with the magnitude of the eigenvector).  Thus, for periodic orbits that 
close after several revolutions such as those seen in Figure 2, the valid linear region for the state transition 
matrix over a whole period can be extremely small.  It is more important, therefore, to maintain the linear 
validity for one or two revs rather than the full period.  Note that ε can be a negative value because the eigen-
vector is simply a direction and does not favor forward or backwards.  In some cases the positive or negative 
sign can switch the general capture direction from L2 to L1 or vice versa as demonstrated in Figure 9 (in 
contrast to Figure 5).   Noting that Figure 3 - Figure 9 show just the views from above, Figure 10 illustrates 
the three-dimensional properties of the example trajectory corresponding to τ=0 from Figure 4. 
 

 
Figure 9: Top view of RTBP capture trajectories to periodic orbit in Figure 2c.   
Same as Figure 5 except negative ε. 
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Figure 10: 3D views of attracting trajectory from Figure 4 (τ=0).  From left to right:  viewed from 1) 
negative y axis,  2) positive x-axis, 3) positive z axis, 4) azimuth=-130ο, elevation=40ο. 

 
The attracting trajectories to the unstable periodic orbits reveal a diverse set of characteristics that 

can generally be separated into three categories:  trajectories that 1) capture from the left through L1,  2)  
capture from the right through L2, and 3) capture via a path that impacts the surface.  While the third 
category is useful for surface to periodic orbit applications, we are primarily interested in orbits that approach 
Europa from beyond its sphere of influence.  The structure of the attracting trajectories is generally sensitive 
to the selection of ε, where the degree of sensitivity is highly dependent on the attracting periodic orbit.  A 
value of 0.0001 is generally a good value to try initially; this corresponds to roughly a 1 km perturbation in 
position and 1 m/s perturbation in velocity.  For the examples shown, we varied this guess by several orders 
of magnitude and selected a value that led to a generally well-behaved manifold.  For a given periodic orbit, 
it is often possible to manipulate the capture orbit to enter near either L1 or L2 through the selection of τ and 
ε, however, as evidenced by most of the examples, each stable manifold naturally leans towards one direction 
over the other.  Spacecraft coming from Io require captures that pass near L1 (from the left), while spacecraft 
coming from Callisto or Ganymede require captures that pass near L2 (from the right).  
 
3. Transition to the Ephemeris Model 
 
 Once an attracting RTBP periodic orbit and one of its stable manifolds is estimated, we proceed to 
find analogous capture trajectories in a realistic ephemeris model.  Based on the discussion from an earlier 
section, we take the approach that sacrifices the preservation of the orbit shape for the guarantee of ballistic 
continuity.   
 

 We start by assuming that a given trajectory approaches Europa with appropriate energy levels such 
that a ballistic capture is feasible (see Figure 11).  Obtaining such a trajectory will be discussed briefly in the 
application section to follow.  From the ephemeris approach trajectory, a target seven-state is chosen at a 
comfortable distance from Europa somewhere in the vicinity of the generated stable manifold.  A variety of 
free parameters in the ephemeris version of the capture trajectory will be selected in order to minimize the 
miss distance of the backward propagated capture trajectory with the target time, position, and velocity on 
the approach trajectory.  Once an ephemeris capture trajectory is found such that the miss distance is 
reasonably small, the roles of the target and chaser are reversed and the approach trajectory can then be re-
optimized with traditional means to target the seven-state on the ballistic capture trajectory.   
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Figure 11:  Capture diagram 

 
The several parameters required for mapping a RTBP capture orbit to the ephemeris model are 

summarized in Table 6.  For a given target orbit, τ, ε, and a selection of λ1 or λ2, we have a departing (in 
reverse time) six-state on the periodic orbit in the RTBP given by Equation (15).    This perturbed six vector 
is mapped to the ephemeris using k and Equations (10)-(12), and is applied at the epoch determined by the 
target epoch plus the free parameter, TOM, or time spent on the manifold.  The resulting perturbed state in 
the ephemeris, X′ephem, is a function of all the parameters in Table 6.   

Table 6: Free parameters for the ephemeris model mapping  

Parameter Comment 
λ 1 or λ2 The eigenvectors in the RTBP are based on the selection of one of the stable eigenvalues 
ε The scalar perturbing multiplier for eigen-direction.  Can be positive or negative. 
τ The time-like variable that parameterizes the periodic orbit.  Can take any value from 0 →1. 
k The scaling parameter that affects the mapping from the RTPB to the ephemeris and accounts for small 

variations in the Europa-Jupiter distance. 
TOM Time On the Manifold.  The epoch is one of the targets on the seven-state on the approaching orbit. Thus, 

the epoch for departing (in reverse time) the periodic orbit is equal to the target epoch plus TOM.  Because 
the ephemeris model is dependent on the epoch (as opposed to the RTBP) and the epoch of the target state 
remains fixed, the structure of the capture orbit is significantly changed each time TOM is changed.  It is 
therefore an iterative procedure to patch the ballistic capture trajectory with the approach trajectory. 

 
 
Generally, we find suitable capture trajectories by guessing reasonable values for all of the 

parameters except the k scaling parameter, where we automating a one dimensional search to minimize the 
miss distances in both position and velocity as indicated in Figure 11.  Values for τ and the eigenvalue are 
typically chosen based on the RTBP manifolds and ε and TOM are iterated manually.  For the selection of ε, 
we are no longer concerned with maintaining the linear assumptions of the state transition matrix as we were 
in the RTBP because we have already sacrificed the preservation of the parent orbit shape.  We are primarily 
concerned only that we find a backward propagated trajectory that leads to a ballistic capture originating in 
the state space vicinity of the approaching orbit.  Thus, we find ε values of 0→0.05 to be reasonable guesses.  
The forward propagation ideally should remain in the vicinity of Europa for several revolutions, but 
generally the uncontrolled orbit lifetimes are short due to the dominating unstable dynamics.   

 
Figure 12 gives an overview of the algorithm from the selection of the attracting periodic orbit to the 

final ephemeris target state that ensures a ballistic capture with the desired characteristics.  The next section 
demonstrates the algorithm with a low-thrust transfer from Ganymede to Europa ending in a highly-inclined 
near circular orbit about Europa.   
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1) Select an unstable RTBP periodic orbit based on desired capture qualities 
2) Propagate the orbit and variational equations for a full period.  Record X(τ) for τ = 0→1 and 

calculate the eigenvectors and eigenvalues of the Monodromy matrix.  
3) Using the state transition matrix, map and record each of the two stable two stable eigenvectors, 

ξi(τ) for τ = 0→1.   
4) Approximate the stable manifold in RTBP 

Select λ1 or λ2  
Select ε 
FOR τ = 0→1 

1) Perturb the X(τ) state using λi ,ξi(τ), ε and Eq. (15) 
2) Propagate the perturbed state in reverse time 
3) Plot attracting trajectory 

END τ loop 
5) Repeat Step (4) until satisfied with manifold characteristics.  Note the τ values that lead to well-

behaved captures in RTBP 
6) Select an ta,ra, and va (epoch, position, and velocity) on an ephemeris trajectory that approaches 

Europa with appropriate energy and geometry 
7) Search for ephemeris captures that minimize the miss distance to originating state. 

Select λ1 or λ2  
Select ε 
Select τ 
Select TOM 
FOR k = kmin→ kmax (typically 0.97→1.03) 

1) Perturb the normalized RTBP X(τ) state using λi ,ξi(τ), ε, and Eq. (15) 
2) Un-normalize the perturbed state X′ using k , LU*, TU*, and Eq. (10) 
3) Map the dimensioned perturbed state to the ephemeris using the epoch, ta+TOM, 

and the mapping described by Eqs. (11) and (12). 
4) Propagate the new ephemeris state in reverse time from t = ta+TOM  to t = ta, 

where the end state is r(ta), v(ta) 
5) Calculate and store ||r - ra|| and ||v - va|| 

END k loop 
Record rb and vb : the final conditions associated with the best miss distances. 

8) Repeat Step (7) until satisfied with the ballistic ephemeris capture trajectory  
9) Re-optimize the approach trajectory to target the rb and vb at time ta to a satisfactory tolerance 

(~10 km, 0.1 m/s) 
10) Store the converged state as rc and vc 
11) Propagate the converged state to a ballistic capture 
12) After a few revs around Europa, employ low-thrust to stabilize the trajectory and commence a 

spiral down to the science orbit 
 

Figure 12:  Ballistic ephemeris model capture algorithm 

 
APPLICATION: LOW-THRUST GANYMEDE TO EUROPA TRANSFER 
  
 We apply the algorithm from Figure 12 to search for a seven-state that will lead to a well-behaved 
ephemeris capture at Europa.  The target periodic orbit, ID=1486948, is chosen and illustrated in Figure 2(c).  
This orbit has mean two-body eccentricity, inclination, and semi-major axis near 0.2, 65 deg, and 8500 km 
respectively.  Its instability due to the high inclination makes it a difficult target for traditional optimization 
or targeting tools.  Steps (1)-(5) of the algorithm are performed and result in plots similar to Figure 5.  For λ 
=λ1 (0.027256), it is clear that several values of τ and ε lead to well behaved trajectories that capture through 
L2.  We proceed with step (6) and the design of the ephemeris approach trajectory.  
 

In this example, the approach trajectory is a low-thrust transfer that originates on an escape path 
from Ganymede.  In order to take advantage of the manifold design philosophy using limited control, the 
approach trajectory must be designed with careful energy and geometry considerations.  In general, if the 
approach trajectory is on or near the intermoon superhighway, or the dominating stable manifold associated 
with the Halo family, it is relatively easy to make minor control adjustments to target the specific capture 
trajectory of interest.  However, with limited control it often not feasible to target a specific close capture 
trajectory if starting on an approach with energy and geometry appropriate for an entirely different class of 
orbits, such as a typical DRO type capture [8].  
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In order to ballistically capture at Europa, it is a necessary (but not sufficient) condition to have the 
same Jacobi energy as the target periodic orbit.  To achieve the Jacobi energies representative of the orbits in 
Figure 2, thrusting is typically required.  However, for limited fuel missions, it is often possible to combine 
minor thrusting with a string of successive flybys of various bodies to manipulate the geometry, phasing, and 
energy levels to suit specific mission needs.  The leveraging from the flybys is of course controlled by the 
minimum altitudes, where the smaller altitudes yield larger control.   However, thrusting in between flybys is 
generally required because of a defining characteristic of all of the capture trajectories in Figure 3 - Figure 9. 

 
Note the check-mark shape that is upside down when approaching from the left (Figure 9, τ=0) and 

right side up when approaching from the right (Figure 11 and Figure 5, τ=0).  This check-mark represents the 
initial stages of a standard patched conic flyby (expressed in a rotating frame), but the gravity well of Europa 
proves to be too strong and captures the spacecraft halfway through the flyby.  The subtle but important 
design challenge lies in the placement of the approaching check-mark.  In all cases in Figure 3 - Figure 9 the 
approaching check-mark finds its extremum near either L1 or L2, and thus the minimum altitude on this 
approaching flyby is necessarily on the same order as the L1 or L2 distance.  In order to maximize the effects 
of the preliminary Europa flybys, close low-altitude flybys are necessary; however, this is directly opposed to 
the high-altitude flyby that the final approach is required to mimic in order to be captured.  For successive 
flyby encounters with the same body, thrusting is required to significantly raise or lower minimum altitudes 
from one flyby to the next.  Therefore, a balance of thrusting and resonant hopping via successive flybys is 
typically required to set up a low-energy capture of Europa or any planetary moon.  For more detail see 
References [6] and [7].   

 
The initial guess for the approach trajectory in the present example is shown on the top row of 

Figure 14.  The trajectory consists of 1 Ganymede flyby and 3 Europa flybys prior to the final approach.  The 
two-body energy with respect to Jupiter and the Jacobi constant with respect to Europa histories are 
illustrated.   The flybys and intermediate thrusting are used to target appropriate energy and geometry for a 
ballistic capture.  Note, in the unthrusted case these energy values are only approximately constant in the full 
ephemeris model.  Going back to step (6) from the algorithm, the state ra, va , and ta is selected as a target for 
the optimization of the ephemeris mapping.  The optimization in steps (7) and (8) are performed and the best 
resulting state, rb and vb ,  that leads to an ephemeris capture is illustrated in Figure 13.  The optimized 
parameters including the k scaling factor are listed in the caption.  Note the resemblance to its corresponding 
RTBP trajectory in Figure 5 (τ=0.2).   

 
Next, from step (9), the full approach trajectory from Ganymede is retargeted and reoptimized with 

Mystic using the new target state rb and vb.  The resulting trajectory converges to the final state rc and vc 
within 2 km in position and and 4 cm/s in velocity.  Although the trajectories are highly sensitive in nature, 
tolerances of 10 km and 100 m/s are generally sufficient to maintain the desired structure of the capture.  The 
converged approach trajectory and energy history are illustrated in the bottom row of Figure 14.  Note, the 
optimizer primarily adjusts the third Europa flyby and raises perijove with thrusting prior to the final 
approach.  
 

Table 7: Resulting states for the example ephemeris capture at Europa 

Description Value a 
The seven-state selected from the ephemeris approach 
trajectory that is a priori in the vicinity of a feasible 
capture in terms of geometry and energy.  The subscript 
a represents approach. 
   

ra = ( -1.07883310E+05,  2.87668841E+04,  1.23441619E+04) km 
va = ( 1.72006636E+00,  -1.81673502E+00,  -3.02506277E-01) km/s 
ta = 2460919.10489252 Julian Date 
 

The seven-state that results from the optimization of the 
parameters given in Table 6 for the mapping to 
ephemeris model.  The subscript b represents best. 
 

rb =( -1.01918183E+05,  3.41628884E+04,  1.74521592E+04) km 
vb =( 1.65707274E+00,  -1.88920203E+00,  -5.60147066E-02) km/s 
tb = ta  
 

The converged state after optimizing the approach 
trajectory with the new target state (rb, vb, ta)  The 
subscript c represents converged. 

rc =( -1.01919709E+05,  3.41616621E+04,  1.74520496E+04) km 
vc =( 1.65708924E+00,  -1.88923145E+00,  -5.60167814E-02) km/s 
tc = ta 

a positions and velocities are relative to Europa in the non-rotating J2000 frame.  
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Figure 13:  Ephemeris ballistic capture trajectory resulting from 
algorithm given in Figure 12.  Optimized parameters: attracting 
periodic orbit ID=1486948, λ =λ1 (0.027256), ε =0.03, τ =0.2, 
TOM=6.1 day, k =0.10053947 

 

 
Figure 14:  Example low-thrust ephemeris transfer from Ganymede to the vicinity 
of Europa.  Arrows on the trajectory indicate thrusting.  Top row: initial guess.  
Bottom row: converged trajectory that leads to a ballistic capture when 
propagated further.  See Table 7 for relevant states.  
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Finally, the trajectory design is completed by ballistically propagating the converged approach state 

to a close highly inclined capture state about Europa.  Following a 2.3 day ballistic coast that captures 
through L2 and completes a full revolution around Europa, low-thrust again is used to maintain the orbit and 
start to spiral down towards the science orbit.   Figure 15 illustrates the final optimized trajectory.  The 
continuation to the science orbit is omitted for clarity although it is straightforward to implement.  Note the 
structure of the capture orbit is remarkably well-behaved despite existing in a highly chaotic and unstable 
region.  While the final capture orbits are clearly dependent on both the epoch and ephemeris, the basic 
characteristics of the orbits are generally reproducible because the technique is based largely on the time 
invariant model of the RTBP. 
 

 
Figure 15: Continuation of the converged trajectory from Figure 14.   Ballistic 2.3 day ephemeris 
capture followed by 4.3 days of optimized low-thrust maneuvers (acceleration ~.13 mm/s2) to finish in a 
near 2 body orbit with eccentricity ~0.003, inclination ~71 deg. and semi-major axis near 7280 km.   
Left:  Rotating frame.  Right:  Non-rotating frame. 

 
 
CONCLUSIONS 
 

The main contributions of this paper are as follows:  1) Dynamical systems theory is successfully 
applied to several unstable periodic orbits that circulate around Europa, and the behavior of the associated 
stable manifolds are investigated and documented.  2)  The subtleties associated with mapping these simple 
model manifolds into a realistic model are explored and an algorithm is presented to find and target efficient 
ballistic captures using a full ephemeris.  3)  Lastly, the presented technique is systematic and allows a 
mission designer to target specific characteristics of a capture state using little control authority even in the 
notably unstable environments such as highly-inclined orbits about Europa.  Although close capture 
trajectories around Europa are the focus of this paper, the technique is applicable for capture or escape from 
any unstable periodic orbit in any dynamical system.  
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