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Abstract 

For many practical THz applications robust, agile and powerful sources are a must. The last decade has 
seen an impressive development in terms of generating THz signals largely in response to space based 
needs. MMIC power amplifiers with impressive gain in the Ka- to-W band have enabled the use of 
microwave synthesizers which can then be actively multiplied to provide a frequency agile power source 
beyond 100 GHz. This medium power millimeter source can then be amplified to enable efficient pumping 
of follow-on balanced multiplier stages. Input power to the multipliers can be further enhanced by power 
combining to achieve close to half a An 800 GHz three-stage multiplier chain, 
implemented this way has demonstrated a peak output power of 1 mW. 

Watt at W-band. 

A second advance in LO generation lies in the Schottky diode varactor technology. Planar Schottky diode 
multipliers have now been demonstrated up to 1500 GHz and it can be assumed that most of the future 
multiplier chains will be based on these robust devices rather than the whisker contacted diode of the past. 
The ability to prodluce planar GaAs diode chips deep into the THz range, with submicron dimensions, has 
opened up a wide range of circuit design space which can be taken advantage of to improve efficiency, 
bandwidth, and power handling capability of the multipliers. 

This talk will present an overview of the current technologies that are available for implementing local 
oscillator sources for 1-3 THz applications. Progress to date on specific components will be discussed in 
some detail. Outstanding issues and concerns regarding practical implementation of these new 
technologies will also be discussed. 

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 
Califwnia, under contract with National Aeronautics and Space Administration. 
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I n t rod u ct i o n 
Status of THz multiplier sources 
Future goals 
Concluding remarks 

2 
ESA Workshop, September 2003, lmran MehdiIJPL 



a
 
0
 

m Q
 

cn L 0
 

I
.
 

v) 
L
 
a
 

D- 

c
 L
 

>
.I 

0
 
S
 

a, 
3
 
0
 

a, 
LL' 0

 

o
m

 
a

m
 

0
0

 >
.I 

0
 
S
 

a, 
0
 

W
 

.- 
E

 0
 

cnc 5 E
 

8 X
 

c/) 
c/) 

.- -
 

rc
 

.c-r 
C

I
 

cn 

F .- t 0 E 

0
 

rc
 
0
 

cn 
T
- 

o 

cn 

x 5 E
 

m
 

W
 
I
 

z .- rc
 

C
I
 

C
I
 

v
) 

F .I
 

t 0 E
 

N
 

I 
T
- 

0
 

m- 
0
 
0
 

N
 

a 
v
) 

W
 



~ 

How far have we come? 
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0.1 um PHEMT process 
50 um thick substrate 

4 = 200 GHz 
64 finger device cell (output) 
on-chip bias network 
50 ohm matching in/out 
2.3 mm x 1.8 mm 

i 

Driver Powe 
Amp rAmp 

Driver Power 
Amp Amp 

Figure 2. Power output from single and dual power combined packaged TRW MMIC 
amplifiers at W-band. 

Ref: R. Lai et. al, "A high efficiency 0.15 um 2-mil thick InGaAs/AIGaAs/GaAs V-band 
power HEMT MMIC," IEEE GaAs IC Symposium Digest, Nov. 1996. 
M. D. Biedenbender et al, "A 0.1 um W-band HEMT production process for high yield 
and high performance low noise and power MMIC's," 16th GaAs IC Symposium, 1994. 
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JPL Schottky Diode Model 
~ n 

Builds on work done by groups at University of Virginia, 
University of Michigan, Chalmers University, and Helsinki 
Model includes time-dependent velocity saturation, 
carrier inertia and shunt capacitance in the undepleted 
active layer, tunneling through the Schottky barrier and 
heating of the junction at high powers. The model is 
calibrated using ensemble Monte Carlo calculations of 
material parameters, but otherwise no parameters are 
fitted other than to DC I-V measurements 

solved iteratively 

used in a harmonic balance technique 

Chip temperature and diode transport properties are 

Diode model for given input power and temperature is 
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Thermal Modeling 

I- 0-1  
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-~ through beam leads only. 
- 

2. Temperature dependent 
I I I 

ode temperature 

1 Modeled system has: 
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First generation discrete chips 
I 

Whisker contacted anode 6-anode 170 GHz chin 

Performance at room temperature 
(Erickson, STT 2000) 
Able to handle 220 mW of input power 
> 30% efficiency, 65 mW at 150 GHz 

Q: Can this approach be extended in frequency? 
9 
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Solution: Integrate circuitry with device ! 

Frame = 12 pm thick 

Q: Can this technology be scaled higher? 
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Devices beyond I THz 
A: Yes-but 6ab.s thickness difficult to scale 

substratejmembrane devices Solution: remove most of the GaAs 

Membrane is 3 microns thick 
Extensive use of beam-leads 
Extremely simplified assembly 
Bias less design 

1200 GHz tripler chip 

Q: Can this technology be scaled higher? 
A: Demonstrated up to 2700 GHz! 

ESA Workshop, September 2003, lmran MehdiIJPL 
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Can we pump HEBs? (courtesy E. Tong, J. Kawamura et al) 

~ 

L.O. 
Guan 

Oscillator 

Amp 
Doubler #1 
Doubler #2 
Doubler #3 
Doubler #4 

Martin-Pupiett Hot / cold 
Interferometer LXYXYXI Load 

ONbN devices, 1.45 to 1.55 THz 
.Threshold power - 1 uW (measured with Calorimeter) 
.Tr-I460K @ I .476 THz (IF was 3 GHz) 
*LO coupling efficiency - 70% 
.Isotherm model predicts 70nW at device (120 nW after correction) 
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1.9THz Tripler w/ BWO Results 
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1745.3 GM Power Sweeps 

1810 GM Power Sweeps 

I 8 O 0  j I ,  
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1900T Frequency sweep (RT) 

Frequency Sweep (-3 mW BWO input) 
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Output Power vs Block Temperature 
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The State of the Art 
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Note: Includes points from Band 5 (-1 120) & UMass (-1800 GHz) 
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Other Challenges 

0 More efficient higher freq power amps? InP, pHEMT 
Improve bandwidth-better designs, re-configurable 
Simplify cha i n construct ion-m icro-mach i ned blocks, 

increased in teg ration 
Planar device/modeling-increase yield, increase 

throughput and uniformity, reduce time to completion 

25 
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Challenge: increase output frequency 

-100 GHz 

5 mW 

Planar Diode properties: 
Membrane thickness: 3 micron 
doping: 5 x 1017 ~ m - ~  
Anode dimensions: 0.14 x 0.6 um 

-200 GHz 

50 mW 

200 mW I 
I I I U  

I 15-18 GHz GHz 

-1 250 
0.3 mW 1 (15%) (0.5%) 

-400GHz (2%) [ 15mW 

-200 GHz 
50 mW (25%) -100 GHz 

5 mW 

Figure 1. Schematic of thg all-solid-state source to 2500 GHz. Dashed outlined components are either 
commercially available or have already been demonstrated in our laboratory. Solid outlined 
components are to be developed under this proposal. 
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C ha I le n g e : m u It i p ixe I receivers 

To increase output power 
Multiple frequency coverage 
Multiple pixel coverage 

Components available, architecture, system 
issues need to be studied 

_ - -  

Kim et al 
I mW at 600 GHz ESA Workshop, September 2003, lmran MehdVJPL 
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Concluding Remarks 

Multiplier chains (200 to 1200 GHz) are now 
possible that are 

Robust 
Broadband (5 to 10 %) 
Cool-able 
Sufficient to pump SIS and HEBs 

Chains in the 1.2 to 1.9 THz range are being 
developed 
Frequency range of 2-3 THz is attainable 
Wider bandwidths (>I 0%) are attainable 
Higher output power is possible with power 
combining techniques 

29 
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THz Power Measurement 

Several power meter technologies available 
- Golay cell, Keating meter, Erickson calorimeter, Bolometer 

Each meter brings specific calibration challenges 
- Impedance mismatch / standing waves 
- Waveguide losses 
- Optical losses / coupling 
- Atmospheric absorption 
- Drift 
- Sensitivity 
- Maximum power limits 

Factor of 2 discrepancies are common 
Agreement to 30% may be possible with care 

+ The ultimate figure of merit is to pump a mixer. 
See Jon Kawamura’s talk Thursday for pumped mixer results. 
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