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Abstract: Until 1979, the evidence linking El Niiio with changes in rainfall around the world came from rain gauges 
measuring precipitation over land and a handful of islands. Before the launch of the Tropical Rainfall Measuring 
Mission (TRMM) in November 1997, the remote sensing evidence gathered since 1979 was confined to ocean rainfall 
because of the very poor sensitivity of the instruments over land. In this paper we analyze the first five years of the first 
global land and ocean remote-sensing record of rainfall. We distill the information into a few objective indices, the 
first principal components of the rain anomaly, and extend them back in time to show how the global remote-sensing 
record implies that El Niiio is indeed the major driver of the global interannual variability of rainfall. 

The El Nifio / Southern Oscillation (ENSO) phenomenon has been characterized using a few in- 
dices calculated from those observables which are most directly related to the physical mechanisms 
that govern it, namely 

the “El Niiio” indices representing an average of the sea surface temperature anomaly within a 
specified region of the equatorial Pacific Ocean, such as the rather popular “Nino-3” index (see 
e.g. Trenberth and Stepaniak, 2001), 

the “Southern Oscillation” indices representing the normalized anomaly in the difference be- 
tween the atmospheric pressure over the Eastern Pacific and that over the Western Pacific / Indian 
Ocean, and almost always calculated using the measured sea-level pressures (SLP’s) at Tahiti and 

at Darwin, as in the case of the “Troup SOI” (Troup, 1965), 
the indices directly representing the anomaly in the Walker Circulation (Bjerknes, 1969), such 

as the 850-mb trade wind index (representing the behavior of the near-surface wind, and calcu- 
lated from the “reanalysis” of the atmospheric fields estimated from large-scale data-assimilating 
models - see Latif et al., 1998) or the 200-mb zonal wind at the equator (representing the upper- 
tropospheric wind, and whose anomalies in the tropics have a most direct effect on the global 
circulation - see Arkin, 1982). 

Thus, the most pertinent observables are the sea surface temperature, the sea-level pressure, and 
the boundary-layer or upper-tropospheric winds, all of them observed in the tropical Pacific. Also 
useful are the depth of the thermocline in the Eastern Pacific, and the outgoing longwave radiation 
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over the tropical Pacific (as a gauge of the frequency and depth of the convective systems). 

Yet the observable which has the most immediate impact on people around the globe is neither the 
strength of the trade winds nor the sea surface temperature nor the atmospheric pressure. Rather, it 

is the effect of ENSO on the regional change in local rainfall patterns. Numerous studies have doc- 
umented the link between ENSO and rainfall in many regions of the globe, associating the warm 
phase with drought conditions in some cases, unusually abundant precipitation in others. The most 
extensive and detailed study of this kind is undoubtedly Ropelewski and Halpert’s (1987, 1988), 
in which the change in the rainfall sampled over land and island stations within several regions 
around the globe is carefully analyzed depending on the prevailing ENSO conditions. Indeed, con- 
sistent correlations are found between the rain anomaly and the ENSO phase in most of the regions 
considered (Ropelewski and Halpert, 1987). One could contemplate synthesizing these observa- 
tions into a global ENSO precipitation index, which would be calculated by adding the rainfall 
anomalies in all areas which experience excess rain during warm ENSO phases and subtracting 
the anomaly in those areas which experience a deficit. The problem with such a proposition is that 
regions which experience excess rain during warm phases do not always experience rain deficits 
during cold phases and vice versa, as Ropelewski and Halpert (1988) observed. In other words, 
the maps of the rainfall anomalies during warm or cold ENSO phases do not appear to be mirror 
images of one another. An equally serious problem with the proposition of subtracting deficit ar- 
eas from excess areas is that, by subjectively selecting only those areas which have a consistently 
sustained correlation with ENSO, one would be ignoring those regions which are less significantly 
affected by the phenomenon, and which could be responsible for a large proportion of the global 
rainfall variability. This problem was addressed by the objective study of Dai et a1 (1997), in 
which a global set of yearly rainfall compiled from landisland station data from 1900 to 1988, was 
analyzed. After subtracting from the values for each station their mean from 1900 to 1988, and nor- 
malizing by the corresponding standard deviation to prevent regions with a large overall variation 
from overwhelming the subtle change in regions with low rainfall, a principal component analysis 

of the resulting normalized anomaly was performed. Dai et a1 found that the first principal com- 
ponent of the normalized annual rain anomaly over the period 1900-1988 was very well-correlated 
indeed with the bi-monthly average sea-surface temperature anomaly over the equatorial Pacific. 
While these results are based exclusively on landisland station data which leave vast expanses of 
ocean unrepresented, they are compelling indicators that ENSO is a very important factor in the 
variability of rainfall. Thus the accumulated evidence begs the question: how can one objectively 
quantify the importance of ENSO in the global (land and ocean) variability of surface rainfall? 
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Until the work of Arkin (1979), Xie and Arkin (1997) and that of Adler et al. (1993) and Huff- 
man et al. (1997), this question had remained unaddressed largely because the systems required to 

monitor precipitation over the oceans simply did not exist. This dire situation changed dramatically 
in the 1980’s with the availability of data from low-earth-orbiting multiple-frequency microwave 
radiometers such as the Special Sensor Microwave Imagers (SSMI), and from geostationary vis- 
iblehnfrared (Vis/IR) imagers. The latter are useful in the sense that they can gauge the height 

of the cloud tops (and hence, at least in convective systems, the depth of the clouds, and hence, 
allowing for a quite large uncertainty in one’s estimates, the amount of rain which these clouds are 
producing - see Arkin, 1979), with frequent updates. With less frequent updates, the low-earth- 
orbit microwave radiometers provide a handful of radiances in which the surface emissivity effects 
and the competition between the absorptiodemission and the scattering from rain and ice can be 
approximately sorted out to produce an estimate of the rainfall amount at rather poor resolution. 

Acknowledging the limitations of SSMA and geostationary IR imagers, Adler et al. (1993) sought 
to combine them in order to take advantage of the strengths of each and build a “merged” IR- 
SSMUsurface-gauge dataset of truly global rainfall, the Global Precipitation Climatology Project 
(GPCP; see Huffman et al., 1997). An “ENS0 precipitation index” (ESPI) is currently calculated 
from GPCP, essentially by subtracting the precpitation anomaly over the region around the Mar- 
itime Continent (10”s - 10°N x 90”E - 150”W) from that over the eastern Pacific (10”s - 10”N 
x 160”E - l00”W) - the exact boundaries of the boxes are “dynamically” calculated in real-time 
to maximize the contrast. By design, ESPI correlates very well with the “El Niiio” and “Southern 

Oscillation” indices (Curtis and Adler, 2000). Going one step further, Xie and Arkin (1997) folded 
in numerical model predictions as well, and produced the “CMAP’ global dataset of monthly sur- 
face rainfall estimates from 1979 to 1995 on a 2.5” grid. Their maps of the seasonal difference 
(warm phase - cold phase) of the rainfall anomaly averaged over the 17 years of data incorporated 
in CMAP confirmed many of the results of Ropelewski and Halpert, and Dai and Wigley’s princi- 
pal component analysis of the normalized annual rain anomaly (Dai and Wigley, 2000) yielded a 
20-point time series (CMAP had by then been updated to 1998) which matches the SO1 over that 

period remarkably well. These first truly global results depend ultimately on the reliability of the 
sources of the data, namely the IR and SSMI estimates. As we have already noted, the former 

relies on the statistically-derived correlation between cloud top heights and surface rain, which has 
a large intrinsic uncertainty and whose applicability depends on precipitation type. While SSMI is 
more directly sensitive to the rain itself, the poor resolution of the instrument forces one to make 
homogeneity assumptions about the precipitation which are likely to introduce large biases in the 
estimates (because the average rain quantities one would like to estimate are related in a very non- 
linear way to the average radiances one measures). Most important, over land, the relation between 



4 

either the IR or the microwave radiances and the surface precipitation is tenuous at best. 

It is precisely to remedy the shortcomings of these systems (their poor resolution and their lack 
of much direct sensitivity to the vertical structure of precipitation) that the Tropical Rainfall Mea- 
suring Mission (TRMM) was conceived and the TRMM satellite launched in November, 1997 
(Simpson et al., 1988). In addition to having a very low resolution-enhancing orbit (originally 350 
km), TRMM’s advantage is that it carries the first spacebome precipitation-profiling radar (PR), in 
addition to a nine-channel microwave radiometer (TMI) and a visiblehnfrared imager. Although 
the clutter from the overwhelming surface echo severely limits the swath of the PR and, therefore, 
limits its ability to sample the precipitation as frequently as a radiometer, the vertical detail with 
which it can probe the atmosphere, its insensitivity to the characteristics of the surface, and its 
high horizontal resolution (P 4 km) make it an ideal instrument with which to “calibrate” the rain 
retrievals of the radiometer within the narrow common swath of the radar (Haddad et al., 1997), 
and subsequently carry this calibration over to the TMI-only retrievals over the wide swath of the 
radiometer (Adler et al., 2000). 

Of particular interest are the surface rainfall estimates produced by this “TRMM-combined” radarhadiometer 
algorithm from December 1997 until the present. These estimates are available in the form of 
monthly rain maps over the region between 40”s and 40”N at a resolution of 5” x5”. To synthe- 
size the information in these maps objectively, we performed principal component analyses of the 
rainfall estimates and of their anomalies. Figure 1 illustrates the results. It displays the coefficients 
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Fig. 1. Coefficients of the first principal component of the TRMM-combined monthly rainfall averages, for the 60 
months of data from 1/98 to 12/02 (Note that there are (80 x 360)/(5 x 5) = 1152 pixels, so the reference value 
for the coefficients is l/m N 0.03. 

of the first principal component of the TRMM-combined monthly rainfall accumulation. As ex- 
pected, the linear combination of pixels which captures the greatest share of the monthly variability 
(about 33%) in the rainfall is obtained essentially by subtracting the pixels with a November-to- 
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April rain peak from the ones with a May-to-October rain peak, reflecting the simple fact that the 

seasons are indeed the major driver of the change in rainfall patterns from month to month. Much 
more interesting is the characterization of the variation of the monthly rain anomaly. Using the 60 

months’ worth of TRMM-combined data from January 1998 to December 2002 as the baseline to 
establish the monthly mean for each pixel, we performed a principal component analysis on the 
monthly TRMM-combined rain anomaly. The coefficients of the first three principal components 

40 

20 

0 

-20 

-40 
-150 -100 -50 0 50 100 150 

40 

20 

0 

-20 

-40 
-150 -100 -50 0 50 100 150 

40 

20 

0 

-20 

-40 

0.1 

0.05 

0 

-0.05 

-0 1 

0 1  

0 05 

0 

-0.05 

-0 1 

0 1  

0.05 

0 

-0.05 

-0 1 
-150 -100 -50 0 50 100 150 

Fig. 2. Coefficients of the first three principal components PCI (top panel), P C 2  (middle panel) and P C 3  (bottom 
panel) of the TRMM-combined monthly rainfall anomalies, for the 60 months of data from 1/98 to 12/02 (the 
reference value for the coefficients is approximately 0.03). 

PCl , PC2 and PC3 (ranked according to their variance in decreasing order) are shown in figure 2. 
PC1 accounts for about 14% of the variability, PC2 accounts for another 7%, and PC3 for a further 
5%. As to the coefficients themselves, one readily notes that the variability of the rainfall anomaly 
is strongly sensitive to the precipitation over the oceans, in rather sharp contrast with the variabil- 
ity of the rainfall itself which, as figure 1 shows, is more sensitive to continental rainfall. This is 
due to the more rapid and pronounced response of the continents to summer heating (resp. winter 
cooling), which enhances (resp. inhibits) the rain-producing convection. In contrast, the tropical 
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Western Pacific and the equatorial Eastern Pacific have large coefficients in all three principal com- 

ponents of the rain anomaly. This is undoubtedly due in no small part to the fact that the TRMM 
record starts in the middle of one of the strongest ENSO warm phases of the twentieth century. 
However, the signs of the coefficients of the principal components over the various pixels within 
the Pacific do not seem clearly consistent enough to make an objective link between the rainfall 

anomaly and ENSO. 

In order to understand in more detail and eventually quantify how the principal components of 
the rain anomaly do correlate with the physical mechanisms which directly affect rainfall, it is 
important to find a way to extend the TRMM observations in general, and the anomaly index PC1 
in particular, beyond the five years' worth of TRMM data. We attempted to achieve this by making 
use of the Global Historical Climatology Network (GHCN) rainfall dataset (Peterson and Vose, 
1997), which provides monthly surface rain accumulations from over 20,000 surface stations. We 
started by distinguishing those TRMM pixels whose coefficients in the first three anomaly principal 
components are large in absolute value, and for which there exists at least one surface station in 
the GHCN database with a reasonably complete observational record extending to December 2002 
(i.e. overlapping the TRMM record) and reaching back at least to the 1950's or earlier. We thus 
identified 21 pixels (highlighted in white in figure 2) and 21 corresponding surface stations, listed 
in table 1. Note that five of these stations are in Micronesia, whose rain anomaly Ropelewski and 
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Fig. 3. Relations between the ground-station-anomaly G and the TRMM-pixel-anomaly T for Nadi and the pixel 
centered at 177.5"E 17.5"s (November-April in blue, May-October in red). 

Halpert found not to correlate consistently with ENSO. Next, one must account for the fact that the 
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GHCN Station 

Buenos Aires 
Legaspi 
Truk 

137.5"E 
157.5"E 
177.5"E 

TRMM-pixel N a + b . (GHCN-station) 
May-to-Oct (a,  b) Nov-to-Apr (a, b) 

(1.3,74) (0.83,49) 
(0.8,59) (0.56, -80) 
(0.5, -43) (0.58, -60) 

132.5"E 
82.5"E 

172.5"E 

Pohnpei 
Nadi (Fiji) 

52.5"W 

(0.54, -86) (0.42, -85) 
(0.74,O) (0.48, -45) 

137.5"W 
97.5"E 

Koror (Palau) 
Jacksonville 
Majuro 
Cayenne 
Hiva Oa 
cocos Is. 

(0.57, -65) 
(0.54, -15) 
(0.48, -56) 
(0.43, -47) 
(0.47, -33) 
(0.57, -25) 

7.5"N 
7.5"s 

12.5"s 

0.042 
-0.039 
0.038 

102.5"E 
177.5"E 
32.5"E 

~~~ 

yap 1 (0.47,-63) ~ I (0.78,-9) ~ I 

12.5"N 0.034 
12.5"s 0.032 
22.5"s 0.030 

Bangkok 
Rotuma (Fiji) 
Inhambane 

(0.5,3) (1.1,27) 
(0.83, -79) (0.8, -72) 

(1.0,O) (1 .o, 0) 

(0.37, -42) 
(1 .o, 39) 

167.5"E 
57.5"E 

147.5"W 

(0.37, -31) 
(0.55, -38) 

22.5"s 0.029 
12.5"s -0.027 
17.5"s -0.025 

Noumea 
Agalega Is. 
Tahiti 

(1.13,7) (0.52, -4) 
(0.46, -12) (0.4, -36) 
(1.1,25) (0.45, -16) 

Key West 
Mahe 
Darwin 

TABLE I 

THE 21 PIXELS AND ASSOCIATED STATIONS, AND THEIR CORRESPONDING CONTRIBUTION TO THE 

CALCULATION OF THE MONTHLY RAINFALL ANOMALY VARIABILITY INDEX. 

(0.62,ll) (l,O, 16) 
(0.3, -12) (0.33, -59) 
(0.72, 1) (0.46, -51) 

surface station accumulations are not perfectly representative of the amounts TRMM would have 
estimated over the corresponding pixel. If one had a large amount of 5" x 5" anomaly data { T }  

(normalized relative to the TRh4M-combined 1/98- 12/02 baseline) carefully classified according to 
the underlying rain regime, along with the corresponding surface station anomalies { G} (calculated 
relative to the same baseline), it would not be unreasonable to postulate a direct relation T = f(G) 
with f depending on the particular location and the particular rain regime. Under this hypothesis, 
the best way to estimate f from the data is to match the cumulative distributions of G and T 

(Haddad and Rosenfeld, 1997). We performed separate probability matches for the 21 stations for 
each of two seasons, May-to-October and November-to-April. The resulting probability-matching 
functions f are illustrated in figure 3 for the pixel 177.5"Ex 17.5"s represented by the ground 
station at Nadi, Fiji. Linear fits for all 46 probability-matching G-T relations are shown in table 
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1. Using them, we can now define a “proxy” PC; for the first TRMM-combined anomaly index 

PCI: indeed, where the latter was a combination PCI = CanTn over all 1152 pixels, define the 
proxy to be the sum PC’, = c ~ ~ ~ ,  anfn(G;n) over the 21 stations, with the same TRMM-combined 
coefficients a, and where f n  is the probability-matching station-pixel relation for the n* pixel and 
the appropriate season (May-to-October or November-to-April), and where the sum has to be re- 
normalized by the factor c = d m .  The comparison between the actual TRMM-combined 
index PCI and its 21-station proxy PC; is shown in figure 4. As the figure suggests, we can now 
compare PC; to any climatological index over the past few decades. The obvious candidates for 

1996 1 997 1998 1999 2001 2002 2003 

Fig. 4. The time-series of the TRMM-combined anomaly PCI (red), and of its 21-station fit PC; (blue). 

such a comparison are the ENSO indices, and figure 5 shows the graphs of PC; and the Troup SO1 
calculated as 

[TahitiSLP - DarwinSLP] - mean 
standard deviation 

so1 = 10 

where the mean and standard deviation are calculated over the period from 1887 until 1989. The 
scaling factor h = 0.027 which was used to change the units of PC; was obtained by minimizing the 
conditional mean-squared distance between h PC’, and SOI, over those months where SO1 exceeds 
1.5 times its standard deviation (in order to avoid fitting noise). The correlation coefficient was 
0.65, and this already respectable value exceeds 0.7 if the correlation is calculated only for those 
samples where either index exceeds 1.8 times the standard deviation of SOI. Finally, figure 6 shows 
the graphs of the 5-month negative running-average E; (m) = -PC{ (m - 2) - . . - PC1 (m + 2) 
for all months m, along with the similarly averaged Nino-3 and EPSI indices. In this case, the 
(unconditional) correlation between the time series Nino-3(y) and (y + t )  reaches a maximum 
of 0.68 when t = 2 months. The same t = 2 months delay applied to E; (y + t )  maximizes its 
correlation with EPSI(y) at the slightly lower value of 0.65. These results confirm that the global 
rain anomaly is well correlated with ENSO. 

Thus one can conclude that the TRMM record confirms that ENSO is the major driver of the in- 
terannual variability of global rainfall. This conclusion should be tempered by two observations. 
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Fig. 5. The time-series of the TRMM-combined anomaly PCI (red), its 21-station fit PC; (blue), and the SO1 (black). 

The first is that the record of TRMM estimates of surface rainfall is geographically restricted to 
latitudes between 40"s and 40"N. Future precipitation remote sensing projects, such as the multi- 
national Global Precipitation Measurement mission's plans for a constellation of satellites, should 
extend the coverage to a much greater proportion of the globe. The second observation is that our 
method of extending TRMM's 60-month record to the preceding decades is admittedly approxi- 
mate and could be greatly improved with the advent of higher-resolution global models. Finally, 
the principal component analysis does highlight those regions where the installation of denser net- 
works of precise in-situ rainfall-measuring instruments would be most cost-effective in validating 
the estimates of future remote-sensing missions as well as those of enhanced weather models. 
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