INDIUM PHOSPHIDE DOUBLE HETEROJUNCTION
BIPOLAR TRANSISTORS WITH T-SHAPED EMITTER
METAL FEATURES HAVING CUTOFF FREQUENCIES IN
EXCESS OF 200 GHZ

Andy Fung, Lorene Samoska, Jim Velebir, Peter Siegel
Submillimeter Wave Advanced Technology Group
California Institute of Technology Jet Propulsion Laboratory, Pasadena, CA
91109, USA

Mark Rodwell, Vamsi Paidi, Zach Griffith
Dept. ECE, University of California, Santa Barbara, CA 93106, USA

Roger Malik
RJM Semiconductor, Berkeley Heights, NJ 07922, USA

andy.k.fung@jpl.nasa.gov
Introduction

• Motivation
 – Improve electronic instruments for spectroscopy.
 – Develop and utilize the fastest transistors (Heterojunction Bipolar Transistors) for advancing heterodyne receivers.

• Device Development
 – Microfabrication of HBTs
 – T-emitter metal structure

• Results
 – DC and RF HBT characteristics
 – Matched HBT amplifier characteristics

• Summary

• Acknowledgments
Motivation
Motivation

Electromagnetic Spectrum

<table>
<thead>
<tr>
<th>Microwaves</th>
<th>Infrared</th>
<th>Visible</th>
<th>Ultraviolet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm, 1mm, 100um, 10um, 1um, 0.1um</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30, 300, 3THz, 30, 300, 3000 GHz, THz, GHz, THz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Microwave/Infrared Spectroscopy
Carbon II - 1.9 THz, H2O - 7.6 THz (Organic Life)
Hydrogen deuteride - 2.7 THz (Big Crunch)

Fmax versus Critical Lithographic Dimension

Emitters Width [um]
Gate Length [um]
Device Development

- Epitaxial Structure - InP/InGaAs/InP Double HBT (DHBT)

Energy level versus position diagram generated with Bandprofiler of W. Frensley UTDallas
Device Development

- Triple Mesa DHBT Microfabrication

1. Epi-wafer
2. EJ flat orientation
3. Collector etch
4. Base post
5. Collector etch
6. Collector metal
7. Collector post
8. Isolation
9. BCB deposition, planarization, etch
10. Metal 1
11. Metal 2 airbridge
Device Development

- T-Shaped Emitter Metal

T-Emitter

Standard Emitter

H. Masuda, et al. '95
H. Nakejima, et al. '99
Results

- Focus Ion Beam Cross Sections and SEMs

Dual 0.5um x 12um Emitter DHBT
Results

- DC Current – Voltage Characteristics

Optical photo of a 0.3umX9um emitter DHBT in coplanar waveguide.
Results

- The figures of merit of high speed transistors are the current gain cutoff frequency \(F_t\) and maximum frequency of oscillation \(F_{\text{max}}\).

\[
F_t = \frac{1}{2 \cdot \pi \cdot \tau_{ec}} \quad \tau_{ec} = \tau_e + \tau_b + \tau_{bc} + \tau_c
\]

\(\tau_{ec}\) is the total emitter to collector delay time of the HBT.

\[
F_{\text{max}} \gg \left[\frac{F_t}{8 \cdot \pi \cdot R_b \cdot C_{cb}} \right]^{1/2}
\]

\(R_b\) is the effective HBT base resistance,
\(C_{cb}\) is the base to collector capacitance.
Results

- RF Vector Network Analyzer Measurements of DHBTs
Results

- RF Vector Network Analyzer Measurements of Amplifiers

Dual 0.7um x 12um Emitter DHBT Amplifier

WR-10 CPW On-Wafer Measurement
- Dual 0.7um x 12um Emitter 100GHz Amplifier
- $J_e = 3.41 \text{mA/um}^2$, $V_{ce} = 2\text{V}$

WR-5 CPW On-Wafer Measurement
- Dual 0.7um x 12um Emitter 180GHz Amplifier
- $J_e = 3.48 \text{mA/um}^2$, $V_{ce} = 2.16\text{V}$
Summary

- We are motivated to improve electronic components for advancing heterodyne receiver technology for future astrophysics, planetary and Earth science spectroscopy missions.
- We have demonstrated,
 - T-shaped emitter metal DHBTs with the goal of improving yield and performance.
 - Third generation emitter mesa HBTs with $F_t = 251$ GHz, $F_{max} = 288$ GHz (Second generation had $F_t = 142$ GHz, $F_{max} = 160$ GHz. First generation had $F_t = 126$ GHz and $F_{max} = 120$ GHz).
 - DHBT tuned amplifier with 3.9dB gain at 82.5GHz.
- Performance of the HBTs will improve with the minimization of parasitics (base contact and series resistances, reduction of the base metal width) and scaling of epitaxial layers.
Acknowledgments

The research and development presented here was carried out at the California Institute of Technology Jet Propulsion Laboratory, a federally funded research and development center under contract with the National Aeronautics and Space Administration, and by MDA under contract DTRA01-01-P-0222, managed by DTRA.