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Abstract. Autonomous off-road navigation is central to several important applications of 
unmanned ground vehicles. This requires the ability to detect obstacles in vegetation. We 
examine the prospects for doing so with scanning ladar and with a linear array of 2.2 GHz 
micro-impulse radar transceivers. For ladar, we summarize our work to date on algorithms 
for detecting obstacles in tall grass with single-axis ladar, then present a simple 
probabilistic model of the distance into tall grass that ladar-based obstacle detection is 
possible. This model indicates that the ladar “penetration depth” can range from on the 
order of 10 cm to several meters, depending on the plant type. We also present an 
experimental investigation of mixed pixel phenomenology for a time-of-flight, SICK ladar 
and discuss briefly how this bears on the problem. For radar, we show results of applying 
an existing algorithm for multi-frequency diffraction tomography to a set of 45 scans taken 
with one sensor translating laterally 4 cm/scan to mimic a linear array of transceivers. This 
produces a high resolution, 2-D map of scattering surfaces in front of the array and clearly 
reveals a large tree trunk behind over 2.5 m of thick foliage. Both types of sensor warrant 
further development and exploitation for this problem. 

1 Introduction 

Autonomous off-road navigation is important in applications of unmanned ground 
vehicles in agriculture, defense, and planetary exploration. The ability to operate 
in all weather, all lighting conditions, and all terrain is a key goal in many of these 
applications. This goal requires exploiting a broader range of sensors than has 
been used in robotic vehicles in the past and developing a deeper understanding of 
the phenomenology associated with those sensors and environmental conditions. 
In this paper, we focus on perception for intelligent navigation in vegetated 
terrain, which is currently one of the most prominent problems in off-road 
navigation. For recent work on new sensor approaches to other aspects of complex 
terrain, such as water hazards and negative obstacles, see 11 1. [21,13]. 



The problem with vegetation is two-fold: (1 )  vegetation can hide real obstacles 
and (2) soft vegetation can appear to range sensors as rough ground or as 
obstacles, both of which will needlessly slow the robot if it thinks it must avoid 
the vegetation or slow down to cross it. To solve the first problem, robots need 
sensors that penetrate some distance through vegetation; to solve the second, 
robots must recognize vegetation as such and reason about its traversability. 

To our knowledge, these problems were not addressed to any significant degree 
in the robotics community prior to the last three years or so. Before then, there had 
been much work in computer vision and some work in robotics on image and 
terrain classification with color (RGB) imagery 141. The remote sensing 
community has been using multispectral imagery extending beyond the visible 
spectrum for terrain classification for many years (51; initial work on applying 
some of these techniques to robot navigation, using visible and near infrared 
imagery, were reported in [6]. The remote sensing community has also used multi- 
return ladar to do “vegetation removal” for terrain mapping from overhead by 
using the last return for each pulse to measure the ground surface, assuming that 
earlier returns come from tree canopy [7]. In IS]. we introduced a similar concept 
for robot navigation with single-return ladars, whereby the spatial distribution of 
range data was analyzed to determine whether it was measuring a smooth surface 
likely to be an obstacle or a highly dispersed surface likely to be vegetation. We 
observed that ladar beams will “penetrate” some distance into vegetation, because 
the narrow beams pass between foliage elements, and that the “penetration depth”, 
to borrow a radar term, can be modelled probabilistically as a function of the size 
and frequency of the foliage elements. Similar concepts were later embodied in 
work at NIST with a two-axis scanning ladar and voxel-based terrain mapping 
algorithms in the Demo 111 program 191. Several approaches to discriminating 
obstacles and vegetation with ladar are compared in [ 101, which also includes an 
extensive review of related literature. 

Obviously, optical techniques like ladar and multispectral imaging have 
inherently limited range for obstacle detection in vegetation, because vegetation is 
opaque at these wavelengths. Radar wavelengths are more able to propagate 
through or diffract around vegetation. Radar has been studied extensively for 
detecting targets hidden in trees I I I I and for remote sensing of crops and forests 
1121. but we have not seen published work on foliage penetrating radar for robot 
navigation. Thus, there is little direct experience on appropriate radar 
wavelengths, sensor designs, resolutions, or penetration depths for robot 
navigation. 

There has been very little work on reasoning about the compliance of 
vegetation to intelligently modulate speed over it. A first attack is given in 11 31. 

In this paper, we continue the study of ladar phenomenology for obstacle 
detection in vegetation by examining ladar “penetration depth” into foliage and by 
examining mixed pixel effects. We also present initial results on the adaptation of 
published radar algorithms for “multi-frequency diffraction tomography” 1141 to 
the problem of detecting obstacles through vegetation. 



Fig. 1. Upper left: urban robot carrying a 360-degree, single-axis scanning ladar. Lower 
left: range data from one scan of the ladar for scene in upper left. Red dots are range 
measurements, blue cones mark structure on the robot that obstructs the beam, and green 
lines show detected obstacles (ie. the two rocks). Right column: two frames from a movie 
of obstacle avoidance in dense, tall grass, in this case using a 180-degree SICK ladar. 

2 Ladar 

Figure 1 illustrates the situation we address and shows results we have 
demonstrated for ladar-based obstacle avoidance in dense vegetation. We have 
developed several algorithms for ladar-based obstacle detection in vegetation. The 
most recent 1151 essentially uses a window of three pixels in single-axis scan ladar 
data to estimate the second derivative of the range data. Where this is high, the 
central pixel is probably a blade of grass; where it is low, the central pixel may be 
an obstacle. Further stages of the algorithm attempt to suppress false alarms and to 
find the full extent of obstacles by reasoning about nearby pixels that are labelled 
as obstacles. As shown in Figure 1,  this algorithm is quite effective at recognizing 
grass and can detect obstacles a short distance into grass. The question now is: 
how far into grass can obstacles be detected with ladar? 

We address this question here with a simple statistical model that provides 
sufficient insight for our current engineering purposes. We model the foliage as 
plant stems with a constant diameter d that occur according to a Poisson 



Table 1. Plant density and stem diameter data for established crops, drawn from the crop 
insurance industry. 

I CrOO I Densitv I Diameter I Ad 

Sweet com 
Kentucky bluegrass 
Timothy grass 1050 

Alfalfa 430 1.29 
Orchard grass 840 

distribution with mean h 181. We approximate the ladar as having an infinitesimal, 
non-divergent beam. We also ignore uncertainty in the range measurement for 
now. Under these conditions, the probability density function (pdf) of the 
measured range will have an exponential distribution with mean Ad, that is: 

f(r) = Ade-"' . 
A similar model was used in [ 161 for two-axis ladar data in a forest. Although real 
ladar beams are slightly divergent, we found in 181 that the exponential 
distribution was close to the true distribution for the divergent case and that it 
modelled experimental data quite well. 

in the field of grass modelled above, then the 
probability that a ladar beam will reach the obstacle is 

If an obstacle is at distance 

m 

g(ro) - Pr(r z q~ - J f ( r ) d r  -e-hdcl I 

'I1 

To estimate realistic values of the parameters A and (I, we obtained published data 
from the crop insurance industry for a variety of crops 117); Table 1 shows a 
selection of this data. Note that the density refers to the number of plants. which 
would not account for multiple leaves on each plant. For comparison, in [SI we 
obtained a value of Ad = 3 . 7 h  in fitting an exponential distribution to scans taken 
with the robot in Figure I of a fairly dense field of tall grass. Estimating the grass 
blade diameter at 3 mm, this gives A = 1233 m2, which falls comfortably in the 
range of agricultural grass data in Table 1. Figure 2 plots g(r) for a few of the 
plants in the table. 

One could go further to develop models of detection and false alarm 
probabilities as a function of range for a given obstacle detection algorithm. For 
our current needs, we take a simpler approach with the following heuristic 
argument. Robust line-fitting algorithms can have a break-down point of up to 
50% outliers (eg. grass in  front of an obstacle); if such were the basis of an 
obstacle detection algorithm, then g(r) = 0.5 would give a plausible estimate of 
the maximum range for reliable detection. For the examples in Figure 2, this gives 
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Fig. 2. Probability g(r) that a range measurement will reach an obstacle as a function of 
range, r, for selected crop data from Table 1 

r = 0.1 I ,  0.54, and 6.9 m for Kentucky bluegrass, alfalfa, and sweet corn, 
respectively. This gives a useful guide to the “penetration depth for ladar-based 
obstacle detection in plants. For many plants, the answer will be well under one 
meter, which is not bad for robots in the man-portable size class but is quite 
limited for large vehicles. 

The above analysis assumed an infinitesimal, non-diverging beam, whereas real 
beams have a finite initial diameter and diverge with increasing range; for 
example, a typical beam spread is around 10 milliradians (mr). This means that the 
beam cross-section is already at least I cm in diameter at 1 m from the robot. 
Given the thinness of much vegetation, this means that mixed pixels will be 
ubiquitous in off-road navigation; that is, pixels where the beam footprint spans a 
range discontinuity. With AMCW ladar, it is well known that mixed pixels can 
produce range measurements literally anywhere within the dynamic range of the 
sensor [ 181. Anecdotally, pulsed time-of-flight ladars like the SICK produce 
mixed pixels with range measurements that are between the foreground and 
background surfaces; however, we have not seen that documented in print. 

To begin to explore how mixed pixels might affect interpretation of vegetation, 
we did some experiments to characterize mixed pixel behavior of the SICK ladar. 
Figure 3 shows the experimental set-up. Figure 4 shows scans taken with the 
backstop at two different distances from the rods. Mixed pixels were clearly 
present when the distance between the foreground and background was 60 cm, but 
were not present when the distance was 200 cm. Trials were conducted with 
foreground-background distances varying in 20 cm steps between these extremes; 
mixed pixels did not occur for separations beyond 160 cm. We interpret this as 
reflecting the ability of the pulse detection circuitry to discriminate the returns 
from the foreground and background, which depends on the separation and on  the 
laser pulse duration. When the object separation is large enough, the two 
reflections are sufficiently separated in time for the circuitry to detect the first 



reflection; otherwise, the two reflections overlap and the measured range is 
intermediate between foreground and background. Similar behavior occurs with 
multi-return, airborne terrain mapping ladars, which cannot distinguish 
consecutive returns within a. threshold separation distance (eg. also about 160 cm). 

In ladar scans of vegetation with sensors mounted on a ground vehicle, the 
foreground-background distance within mixed pixels will often be less than the 
minimum discriminable return separation, particularly at close ranges. We suspect 
that this will tend to make vegetation appear flatter than it is in reality - which 
may be convenient. Future experiments to confirm this would be valuable. 

Fig. 4. Set-up for experiments 
to characterize mixed pixel 
behavior of the SICK Ipdar. 
The ladar is at a variable 
distance in front of a row oJ 
vertical rods that mimic stem. 
which in turn are at a variable 
distance in front of a frat 
vertical backstop. The red 
wedge is a graphic overlay 
illustrating the plane of the 
scan. 

3 Radar 
Radar-based object detection in foliage has been studied for remote sensing of 
crops and forests [12] and for detecting military targets in trees 1 1 1 1 .  We 
conducted experiments on radar-based obstacle detection through foliage using a 
radar that was available to us through the DARPA Tactical Mobile Robotics 
program. In this section, we very briefly summarize issues pertinent to radar 
remote sensing through foliage, then briefly describe the sensor we used. the data 
processing we applied, and the results we achieved. 

Two key issues are penetration depth of the radar energy through the foliage 
and angular (or spatial) resolution of the radar system. Penetration depth is a 
function of the dielectric constant of the material being penetrated; for natural 
materials, including vegetation, this depends primarily on the moisture content of 
the material. Formally, penetration depth is defined as the depth at which the 
signal is attenuated to lle (37%) of its original value: typically, this happens 
within a few wavelengths. Wavelengths used in remote sensing of vegetation vary 
from about 70 cm (- 0.5 GHz) to 1 cm (- 30 GHz). The radar conveniently 
available to us was a micro-impulse radar (MIR) from Lawrence Livermore 
National Laboratory (Figure Sa), which was developed with buried mine detection 
as a primary application. This unit has a center frequency of 2.2 GHz (wavelength 
of 13.6 cm), frequency content from about 1-4 GHz, a pulse width of 0.5 ns, 
average power of 0.1 mW, and a beam width of 90x90 degrees with an 



. 
Fig. 4. Results from mixed pixel characterization experiments from the set-up shown in 
Figure 4. Both graphs show plots of a single scan of range data, with blue dots representing 
range pixels and line segments drawn between them to clarify scan order. In both graphs, 
the upper row of dots are pixels on the backstop and the bottom-most dots are pixels on the 
rods. Intermediate dots in the top graph are mixed pixels. In both graphs, the ladar was 80 
cm from the rods. Top: 60 cm between rods and backstop; bottom: 200 cm between rods 
and backstop 

approximate antenna size of 11x7 cm. These parameters made it reasonably well 
suited to the initial feasibly study we desired to conduct, with the exception of the 
very wide beam width. 

Beam width is an inverse function of antenna width; hence, to get a narrow 
beam requires either a wide real aperture antenna or synthetic aperture algorithms 
applied to multiple measurements from a moving sensor. Since we desired at least 
a crude image of material behind foliage, rather than just one range measurement, 
we also needed either a scanning radar o r  multiple transceivers. The technique we 
explored was to take multiple scans by translating one radar perpendicular to the 
beam axis, then to estimate a 2-D map of scattering surfaces using a radar signal 
processing algorithm based on diffraction tomography using content from multiple 
frequencies 1141. The concept was that the single, translating radar would be 
replaced by multiple transceivers in a deployed system on a robotic vehicle. 



Figure 5b-5c shows a large tree trunk obscured by foliage that was used for 
testing. In this data set, we acquired 45 scans, with the sensor moved 4 cm per 
scan. Figure 6a shows the amplitude data for all 45 scans concatenated together 
(the X axis is the sensor translation axis). Deep blue represents low amplitude; 
bright red represents high amplitude. The reconstruction algorithm [ 141 
transforms this data to the frequency domain, then applies a line-to-line backward 
propagation algorithm to estimate the spatial frequency map of scatterers one 
depth (Z value) at time, and finally transforms back to the spatial domain to obtain 
the intensity map in Figure 6b. The tree trunk was very clearly detected, behind 
over 2.5 m of branches and leaves. 

(a) (b) (C) 
Rg. 5. (a) Micro-impulse radar, shown with a quarter for scale. (b) Side view of a tree that 
was imaged with the radar. showing a large trunk over 2.5 m behind thick foliage. (c) Front 
view of the tree: the red line shows the path along which the sensor was translated to 
acquire scans. 

5 Summary and Conclusions 

We demonstrated obstacle detection and avoidance behavior in dense, tall grass 
with a SICK ladar mounted on a portable robot. To gain inside into how far into 
grass and other vegetation obstacles can be detected, we presented a simple 
probabilistic model, based on assuming a Poisson distribution for the vegetation, 
parameterized in terms of the stem diameter and frequency. We instantiated these 
parameters for various plant types with data drawn from the crop insurance 
industry. This led to predictions that the reliable obstacle detection distance could 
range from on the order of 10 cm for very dense grass to about 7 m for a field of 
sweet corn. We observed that mixed pixels will be ubiquitous in ladar scans of 
vegetation and speculated that this may cause the Vegetation to appear flatter than 
it  really is, particularly close to the robot; this could be helpful to driving control 
algorithms, because it would smooth out the apparent bumps in the terrain. This 
prediction needs to be tested experimentally. 

We then presented results for obstacle detection through foliage with a 2.2 GHz 
micro-impulse radar. The radar was translated perpendicular to the beam axis to 
acquire 45 scans, 4 cm apart, simulating a dense linear array of transceivers. 
Applying a multi-frequency diffraction tomography algorithm to this data 
produced a high resolution, 2-D map of scattering surfaces, which revealed a large 
tree trunk behind 2.5 m of thick foliage. We have not had the opportunity yet to 



build an array with multiple transceivers, but these results suggest that this has 
great potential for allowing robots to detect obstacles a few meters through 
vegetation that would be too dense for ladar. 
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Fig. 6. (a) Concatenated amplitude data from 45 scans, spaced 4 cm apart, of the tree in 
Figure 5b-5c. (b) 2-D density map obtained by applying a multi-frequency diffraction 
tomography algorithm 1141 to the data in (a). The bright red spot is the tree trunk 

Acknowledgements 

The research described in this paper was carried out by the Jet Propulsion Laboratory. 
California Institute of Technology, and was sponsored by the DARPA Tactical Mobile 
Robotics, Mobile Autonomous Robot Software, and Perceptor programs through 
agreements with the National Aeronautics and Space Administration. Reference herein to 
any specific commercial product, process. or service by trade name, trademark, 
manufacturer, or otherwise, does not constitute or imply its endorsement by the United 
States Government or the Jet Propulsion Laboratory, California Institute of Technology. 



References 

I .  Matthies, L., Bellutta, P., McHenry, M. (2003) Detecting Water Hazards for 
Autonomous Off-Road Navigation. h o c .  SPIE Symp. on Unmanned Ground Vehicle 
Technology V, Orlando, Florida 

2. Sanval, A., Rajagopalan, V., Simon, D., Rosenblum, M., Nett, J. (2003) Terrain 
Classification. Proc. Collaborative Technology Alliances Conference on Robotics. U.S. 
Army Research Laboratory, Adelphi, Maryland 

3. Matthies, L., Rankin, A. (2003) Negative Obstacle Detection by Thermal Signature. 
Proc. IEEE Int. Conf. on Robotics and Automation. Taipei, Taiwan 

4. O h ,  K.E., Tseng, D.Y. (1991) Autonomous Cross-Country Navigation. IEEE Expert, 
6(4) 

5. Elachi. C. (1987) Introduction to the Physics and Techniques of Remote Sensing. John 
Wiley and Sons, New York 

6. Matthies, L., Kelly, A., Litwin, T., Tharp, G. (1996) Obstacle Detection for Unmanned 
Ground Vehicles: a Progress Report. In: Giralt, G., Hirzinger, G. (eds.): Robotics 
Research: Proceedings of the 7th International Symposium. Springer-Vedag 

7. Jensen, J. R. (2000) Remote Sensing of the Environment, Prentice-Hall 
8. Macedo, J., Manduchi, R., Matthies, L. (2000) Ladar-based Discrimination of Grass from 

Obstacles for Autonomous Navigation. Proc. 7th Int’l. Symp. of Experimental Robotics, 
Honolulu, Hawaii. 

9. h a z e .  A., Murphy, K., DelGiorno, M. (2002) Autonomous Mobility for the Demo 111 
Experimental Unmanned Vehicles. Annual Symp. of the Association for Unmanned 
Vehicle Systems International (AUVSI), Orlando, Florida 

IO. Hebert, M., Vandapel, N., Keller, S., Donamukkala, R.R. (2002) Evaluation and 
Comparison of Terrain Classification Techniques from LADAR Data for Autonomous 
Navigation. Army Science Conference, Orlando, Florida 

11. XU, X., Narayanan, R.M. (2001) FOPEN SAR Imaging using UWB Step-frequency and 
Random Noise Waveforms. IEEE Transactions on Aerospace and Electronic Systems, 
37(4) 

12. Henderson, F.M., Lewis, A.J. (eds.) (1998) Manual of Remote Sensing, Vol. 2: 
Principles and Applications of Imaging Radar. John Wiley and Sons, New York 

13. Talukder, A., Manduchi, R., Castano, R., Owens, K., Matthies, L., Castano, A., Hogg, 
R. (2002) Autonomous Terrain Characterization and Modelling for Dynamic Control of 
Unmanned Vehicles. Proc. IEEElRSJ Conf. on Intelligent Robots and Systems, 
Lausanne, Switzerland 

14. Mast, J.E.. Johansson, E.M. ( 1994) Three-dimensional Ground Penetrating Radar 
Imaging Using Multi-frequency Diffraction Tomography. Prw. SPIE Vol. 2275: Symp. 
on Advanced Microwave and Millimeter Wave Detectors 

15. Castano, A., Matthies. L. (2003) Foliage Discrimination Using a Rotating Ladar. IEEE 
Int’l Conf. on Robotics and Automation, Taipei, Taiwan 

16. Huang. J., Lee, A.B., Mumford, D. (2000) Statistics of Range Images. IEEE Conference 
on Computer Vision and Pattern Recognition, Hilton Head, South Carolina 

17. //www.agric.gov.ab.ca/agdexl I 00/ 100-22-1 .html 
18. Hebert, M., Krotkov, E. (1992) 3-D Measurements from Imaging Laser Radars: How 

Good are They? Int’l J. of Image and Vision Computing, lO(30) 




