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Who are we?

• Dr. Michel Ingham (JPL) 

• Dr. Paul Robertson (MIT)

• Acknowledgment: Prof. Brian Williams (MIT)
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Who are you?

• How about briefly sharing:
– Your name
– Your affiliation
– What you do
– The reason for your interest in this topic

• This way, we can try to tailor some of the discussion 
to your interests…
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Logistics

• 8:00am to 11:50am
• 15 minute break around 9:50am
• Feel free to interrupt with questions at any time!
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Outline

• Introduction & Overview
• Model-based Programming
• Execution of Model-based Programs
• Fundamentals of Model-based Reasoning
• Modeling via State Analysis
• Advanced Methods
• Conclusion
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Introduction & Overview
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Vast Networks of 
Complex Embedded Systems

• We are creating vast networks 
of embedded systems that 
perform critical functions over 
long periods of time, often in 
harsh and uncertain 
environments.

• These long-lived systems 
achieve their increasingly 
ambitious goals by coordinating 
a complex network of devices.

• Spacecraft must achieve 
robustness by managing a 
complex set of subsystems, 
over a range of possible 
nominal and off-nominal
scenarios.

• Programming these systems is 
becoming an increasingly 
daunting task.

Rovers

Robotic Outposts
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Vast Networks of 
Complex Embedded Systems
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Mission Sequencing: State of the Practice

• Time-tagged nominal command sequences

 
GS,SITURN,490UA,BOTH,96-355/03:42:00.000; 

  
 CMD,7GYON, 490UA412A4A,BOTH, 96-355/03:47:00:000, ON; 
 CMD,7MODE, 490UA412A4B,BOTH, 96-355/03:47:02:000, INT; 
 CMD,6SVPM, 490UA412A6A,BOTH, 96-355/03:48:30:000, 2; 
 CMD,7ALRT, 490UA412A4C,BOTH, 96-355/03:50:32:000, 6; 
 CMD,7SAFE, 490UA412A4D,BOTH, 96-355/03:52:00:000, UNSTOW; 
 CMD,6ASSAN, 490UA412A6B,BOTH, 96-355/03:56:08:000, GV,153,IMM,231, 
     GV,153; 
 CMD,7VECT, 490UA412A4E,BOTH, 96-355/03:56:10.000, 0,191.5,6.5, 
     0.0,0.0,0.0, 
     96-350/ 
     00:00:00.000,MVR; 
 SEB,SCTEST, 490UA412A23A,BOTH, 96-355/03:56:12.000, SYS1,NPERR; 
 CMD,7TURN, 490UA412A4F,BOTH, 96-355/03:56:14.000, 1,MVR; 
 MISC,NOTE, 490UA412A99A,, 96-355/04:00:00.000, ,START OF TURN;,  
 CMD,7STAR, 490UA412A406A4A,BOTH 96-355/04:00:02.000, 7,1701, 
      278.813999,38.74; 
 CMD,7STAR, 490UA412A406A4B,BOTH, 96-355/04:00:04.000, 8,350,120.455999, 
     -39.8612; 
 CMD,7STAR, 490UA412A406A4C,BOTH, 96-355/04:00:06.000, 9,875,114.162, 
    5.341; 
 CMD,7STAR, 490UA412A406A4D,BOTH, 96-355/04:00:08.000, 10,159,27.239, 
    89.028999; 
 CMD,7STAR, 490UA412A406A4E,BOTH, 96-355/04:00:10.000, 11,0,0.0,0.0; 
 CMD,7STAR, 490UA412A406A4F,BOTH, 96-355/04:00:12.000, 21,0,0.0,0.0; 
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Mission Sequencing: State of the Practice

• Time-tagged nominal command sequences
• If absolutely necessary, conditional behavior via rule-

based monitors or hard-coded state machines
• Usual off-nominal behavior response is “safe mode”:

– costly ground ops
– lost science opportunities

• For critical mission sequences:
– Safing mechanism is disabled
– Hard-coded fault protection via 

highly-specialized software modules:
• ad-hoc
• complex
• expensive to generate and test Launch & deployment

Planetary fly-by

Orbital insertion

Entry, descent & landing
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Large collections of devices must work in concert to achieve goals
• Devices indirectly observed and controlled.
• Must manage large levels of redundancy.
• Need quick, robust response to anomalies throughout life.

The Complexity Challenge

Cassini Maps Titan 
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Isolating Hidden Failures Requires Reasoning 
About Large Models: STS-93

Symptoms:
• Engine temp sensor high
• LOX level low
• GN&C detects low thrust
• H2 level possibly low

Problem: Liquid hydrogen leak

Effect: 
• LH2 used to cool engine
• Engine runs hot
• Consumes more LOX

The Complexity Challenge
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The Complexity Challenge

“Houston, we have a problem...”
• Quintuple fault occurs (three shorts, 

tank-line and pressure jacket burst, 
panel flies off). 

• Ground assembles novel repair.
• Swigert & Lovell work on Apollo 13 

emergency rig lithium hydroxide 
unit.

• Mattingly works in ground simulator 
to identify novel sequence handling 
severe power limitations.

Autonomy software should embody the innovation 
exemplified in Apollo 13 and other missions.
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The Complexity Challenge

Programmers are overwhelmed
by the bookkeeping of reasoning
about unlikely hidden states.

Leading Diagnosis:
• Legs deployed during descent.
• Noise spike on leg sensors 
latched by software monitors.
• Laser altimeter registers 40m.
• Begins polling leg monitors to 
determine touch down.
• Latched noise spike read as 
touchdown.
• Engine shutdown at ~40m. 

Model-based Programming:
Creation of embedded & robotic 
systems that manage interactions 
automatically, by reasoning from 
models of themselves and their 
environment.

Mars Polar Lander
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Terminology

• Model-based Programming languages elevate the task to storyboarding and 
modeling.

– Engineers program their high-level intentions in terms of how they would like the state 
of the world to evolve.

– Programmers describe the world (system + environment) using commonsense models 
of normal and faulty behavior. 

• Model-based Executives implement these intentions by reasoning on the fly.
– They continually hypothesize the likely states of the world, given what they observe.
– They continually plan and execute actions in order to achieve the programmer’s 

intentions.

• Model-based Autonomy is the discipline of applying Model-based 
Programming principles to the control of complex embedded systems. 

– These systems achieve unprecedented robustness (“fault-awareness”) by leveraging 
the capabilities of their Model-based Executives. 

– They automate onboard sequence execution by tightly integrating goal-driven 
commanding, fault detection, diagnosis and recovery.  
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Model-based Programs Reason about State  

Embedded programs interact with
the system’s sensors/actuators:

• Read sensors 

• Set actuators

Model-based programs interact with 
the system’s (hidden) state directly:

• Read state

• Set state

Embedded Program

State
Plant

Obs Cntrl

Programmers must reason 
through interactions between 
state and sensors/actuators.

Model-based Executives automatically
reason through interactions between 
states and sensors/actuators.

Model-based
Embedded Program

State
Plant

Estimated State
Model-based Executive

Obs Cntrl
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Orbital Insertion Sequence:
State-based Specification

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burn
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Orbital Insertion Sequence:
State-based Specification

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burn

Set both engines to “standby”:

A off
B off

EngineA EngineB
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Orbital Insertion Sequence:
State-based Specification

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burn

Set both engines to “standby”:
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Orbital Insertion Sequence:
State-based Specification

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burn

Turn science camera “off” to avoid 
contamination from engine plume:

Science Camera

on
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Orbital Insertion Sequence:
State-based Specification

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burn

Turn science camera “off” to avoid 
contamination from engine plume:

Science Camera
off
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Orbital Insertion Sequence:
State-based Specification

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burnOnce both engines are in 

“standby” and the camera is 
“off”, fire the primary engine:

EngineA EngineB

A standby
B standby
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Orbital Insertion Sequence:
State-based Specification

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burnOnce both engines are in 

“standby” and the camera is 
“off”, fire the primary engine:

EngineA EngineB
A firing
B standby
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Orbital Insertion Sequence:
Off-Nominal States

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burnIf primary engine fails, fire 

secondary engine instead:

EngineA EngineB

A standby
B standby
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Orbital Insertion Sequence:
Off-Nominal States

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burnIf primary engine fails, fire 

secondary engine instead:

EngineA EngineB

A failed
B standby
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Orbital Insertion Sequence:
Off-Nominal States

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burnIf primary engine fails, fire 

secondary engine instead:

EngineA EngineB

A failed
B firing
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System Under Control

Command
Sequence

Typical Spacecraft
Execution Architecture

CommandsObservations

Sequence Execution,
Real-Time Behaviors,

& Fault Protection
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System Under Control

Command
Sequence

Typical Spacecraft 
Execution Architecture

CommandsObservations

Fault Protection
Fault ProtectionFault Protection

Real Time 
Behaviors

Real Time 
Behaviors

Real Time 
Behaviors

Real Time 
Behaviors

Fault ProtectionSequence 
Execution



17

33

System Under Control

Command
Sequence

Typical Spacecraft 
Execution Architecture

CommandsObservations

Fault Protection
Fault ProtectionFault Protection

Real Time 
Behaviors

Real Time 
Behaviors

Real Time 
Behaviors

Real Time 
Behaviors

Fault ProtectionSequence 
Execution

Time-tagged sequences of low-
level commands and “macros” …

… with fault protection 
software running in 

parallel, ready to “take 
over” from nominal 

sequence execution when a 
fault monitor is triggered.

… augmented with event-driven 
behaviors when necessary…

… executed by a nominal 
sequencing engine…
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System Under Control

Command
Sequence

Limitations of the Typical Architecture

CommandsObservations

Fault Protection
Fault ProtectionFault Protection

Real Time 
Behaviors

Real Time 
Behaviors

Real Time 
Behaviors

Real Time 
Behaviors

Fault ProtectionSequence 
Execution

Sequence designers’
intent is not explicit 

in the sequence

Complex interactions between these elements make it 
difficult and costly to validate flight software, and to 

have confidence that it will work reliably and robustly.

Fault Protection is often considered an “add-on” capability, 
adjunct to the nominal control system and developed late in 

the project lifecycle, despite the fact that its design can 
uncover problems with the nominal control design.

System requirements and 
understanding of behavior are 
not always directly traceable to 

the flight software design.

The boundary between State 
Determination and State 

Control is sometimes blurred, 
with no explicit representation 

of “State” in the software.
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System Under Control

Control
Specification

Desirable Architectural Features

CommandsObservations

Onboard
Executive

Simple state-based 
control specifications 

with explicit intent

Automated reasoning through 
low-level plant interactions 

Fault-awareness 
(in-the-loop recoveries)

Models that are 
writable/inspectable
by systems engineers

Separation of state 
determination from control, 

with an explicit notion of 
state at the boundary
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System Under Control

Model-based
Program

Model-based Programs and Executives 
Provide These Features

CommandsObservations

Model-based
Executive

Simple state-based 
control specifications 

with explicit intent

Automated reasoning through 
low-level plant interactions 

Fault-awareness 
(in-the-loop recoveries)

Models that are 
writable/inspectable
by systems engineers

Separation of state 
determination from control, 

with an explicit notion of 
state at the boundary
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System Under Control

Model-based
Program

Model-based Program

Control
Program

System
Model

CommandsObservations

Model-based
Executive
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System Under Control

Model-based
Program

Model-based Program

Control
Program

System
Model

CommandsObservations

Model-based
Executive

Systems engineers 
think in terms of 

state trajectories…
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EngineA EngineB

Science Camera

EngineA EngineB

Science Camera

Control Program: Intent
Expressed as Desired State

OrbitInsert():: 
(do-watching ( (EngineA = Firing) OR (EngineB = Firing) )

(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ( (EngineA = Standby) AND (Camera = Off) )
(EngineA = Firing) ) )

(when-donext ( (EngineA = Failed) AND (EngineB = Standby) AND (Camera = Off) )
(EngineB = Firing) ) ) )

Control Program specifies 
state trajectories:
– fires one of two engines
– sets both engines to ‘standby’
– prior to firing engine, camera must be 
turned off to avoid plume contamination
– in case of primary engine failure, fire 
backup engine instead
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System Under Control

Model-based
Program

Model-based Program

Control
Program

System
Model

CommandsObservations

Model-based
Executive

Engineers reason about 
how to achieve state
trajectories using models 
of system behavior.
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System Model: Formal 
Descriptions of State Behavior 

EngineA EngineB

Science Camera

EngineA EngineB

Science Camera

StandbyStandby

Engine ModelEngine Model

OffOff

offoff--
cmdcmd standbystandby--

cmdcmd

0.010.01

(thrust = full) AND
(power_in = nominal) AND 
(flow_in1 = nominal) AND 

(flow_in2 = nominal)
FiringFiring

0.010.01
standbystandby--

cmdcmd
firefire--
cmdcmd

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

0.010.01

FailedFailed

OnOn

Camera ModelCamera Model

OffOff

turnoffturnoff--
cmdcmd

turnonturnon--
cmdcmd

(power_in = zero) AND
(shutter = closed)

(power_in = nominal) AND
(shutter = open)

0.010.01

0.010.01

ResettableResettable

resetreset--
cmdcmd

System Model describes behavior 
of each component:
– nominal and off-nominal behavior
– qualitative constraints
– probabilistic transitions
– costs/rewards

One state machine per component, 
operating concurrently
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Model-based
Program

Model-based Autonomy Architecture

Model-based Executive

Control Sequencer

Deductive Controller

Control
Program

System
Model

Configuration goalsState estimates

CommandsObservations
System Under Control
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Model-based
Program

Model-based Executive

Model-based Executive

Control Sequencer

Deductive Controller

Control
Program

System
Model

Configuration goalsState estimates

CommandsObservations
System Under Control

The Control Sequencer is responsible for 
generating, in real time, the sequence of 
configuration state goals prescribed in 
the Control Program.

The Control Program 
is compiled into an 
executable form.
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Model-based
Program

Model-based Executive

Model-based Executive

Control Sequencer

Deductive Controller

Control
Program

System
Model

Configuration goalsState estimates

CommandsObservations
System Under Control

The Deductive Controller is responsible for 
estimating the most likely current state based 
on observations from the system, and issuing 
commands to achieve the configuration goals.

The System Model is 
compiled into a form 
suitable for reasoning.
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Example: Model-based Executive

• States like (EngineA = Firing) are not necessarily 
DIRECTLY observable or controllable

• When the Control Sequencer issues the configuration 
goal (EngineA = Firing), the Deductive Controller…

Fuel tankFuel tankOxidizer tankOxidizer tank
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Mode Estimation

Example: Model-based Executive

Mode Reconfiguration

Determines valves
on the backup engine 
that will achieve thrust,
plans needed actions 
and executes them. Mode Estimation

Deduces that a valve 
failed - stuck closed

Mode Reconfiguration

Plans actions to 
open six valves 
and executes 

them, 
one at a time

Fuel tankFuel tankOxidizer tankOxidizer tank

Deduces that
thrust is off, and

the engine is healthy
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Up Next…

• Introduction to Model-based Programming:
– Control Programs
– System Models

System Under Control

Model-based
Program

Control
Program

System
Model

CommandsObservations

Model-based
Executive


