
Mission Data System

KM-1

Raytheon Java DayRaytheon Java Day

Evaluation the RTSJ Distributed PlatformEvaluation the RTSJ Distributed Platform

Kenny Meyer

Jet Propulsion Laboratory

July 19, 2005

KM-2

Background
• NASA funded several studies to determine if RTSJ suitable for

flight systems (1999 - present). Including…
• Golden Gate: RTSJ version of Rock 7 Rover (2003)
• MXJ Project: JPL is Co-I to Kestrel lead NASA-sponsored effort to

synthesize safety critical code for Project Constellation

• Raytheon funded a 2-Phased evaluation of RTSJ tools
• Phase 1 (Summer ‘04)

• Evaluated function and behavior of RTSJ JVMs
• Identified gap: No RTSJ compatible CORBA solution available
• Report submitted to Raytheon in August ‘04

• Phase 2 (Spring ‘05):
• Evaluated function and behavior of RTSJ compliant RT-CORBA ORBS
• Evaluated the interaction between the RTSJ-enabled RT-CORBA ORBS

and the RTJVM
• Report submitted to Raytheon in May ‘05

• Objective for today: Provide overview of the Phase 2 evaluation

KM-3

Experimental approach
• Experimental Goal: Observe effect of processor loading on a control task
• Basic Protocol

• Run two publish-subscribe tasks: High-priority, foreground task and a low-priority
background task over over RTSJ-enabled-RT CORBA middleware
• High priority task published small objects @ 100ms
• Low priority task published was varied to observe effects

• Both tasks send objects to RTSJ server applications over RTSJ-enabled-RT CORBA
ORBs

KM-4

Test Cases
NHRT
baseline test

Measure jitter of a NHRT high priority
thread with no background thread

NHRT
Interaction
Test

Measure jitter of an NHRT high priority
thread publishing small objects, while an
NHRT low priority thread is
concurrently publishing objects of small,
medium and large object sizes.

NHRT
Garbage
Collection
Test

Measure jitter of an NHRT high priority
thread publishing small objects, while an
RT low priority thread is concurrently
publishing objects of small, medium and
large object sizes.

RT Garbage
collection
Test

Measure jitter of an RT high priority
thread publishing small objects, while an
RT low priority thread is concurrently
publishing objects of small, medium and
large object sizes.

C
on

tro
l

C
as

e Measures include:
• Client send jitter

• Client receive jitter

• Round trip time

Data Collected
for three

RTSJ-enabled
ORBs

Data Collected
for three

RTSJ-enabled
ORBs

N
o

G
ar

ba
ge

G
ar

ba
ge

P

ro
du

ci
ng

KM-5

Sample Findings
Example Baseline Client Send Jitter

(6,000)

(4,000)

(2,000)

-

2,000

4,000

6,000

0 100 200 300 400 500 600 700 800 900 1000

Iterations

N
an

os
ec

on
ds

SJHP Object size = 20 SJHP Object size = 200 SJHP Object size = 4000

9

• Client send jitter

• Single thread

• No Garbage

• Very stable for small, medium and large objects (< 5 µs)`

KM-6

Sample Findings (2)

Example NHRT-GC Round Trip Time

900,000

950,000

1,000,000

1,050,000

1,100,000

1,150,000

1,200,000

1,250,000

1,300,000

0 200 400 600 800 1000

Iterations

Na
no

se
co

nd
s

RT LP Object size=10 RT LP Object size=200 RT LP Object size=4000

Example NHRT-GC Round Trip Time

-

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

18,000,000

0 200 400 600 800 1000

Iterations

N
an

os
ec

on
ds

RT LP Object size=10 RT LP Object size=200 RT LP Object size=4000

• Round Trip data

• Low priority background thread
producing garbage

• Considerable jitter when large
objects on the net (~18 ms)

• Modest jitter with small and
medium objects on the net (< 1.2 ms)

ZoomedZoomed
• Oscillation probably caused by

Orb interaction with network
interface

KM-7

Key Findings
• Tech Support

All vendors demonstrated an extraordinary effort to support our evaluation. Each of the ORBs is backed
by dedicated and competent professionals.

• Intra-ORB comparison
Small and medium background objects tended cause similar jitter. Large object cause significantly
worse jitter.

• Inter-Orb comparison
One ORB was the best overall performer. The most significant differences were with large background
objects. The differences were much less significant with small a medium background objects

• SMP may adversely affect network performance
The RTJM runs all NHRTs on a single processor with disabled interrupts. Network traffic is handled
another processor that may handle RT processes. Consequently, all NHRT network traffic is handled by
a node that may be running non-real time tasks.

• Maturity
The evaluated RTSJ-enabled ORBs are engineering prototypes. Nevertheless, the overall performance
was surprisingly good—especially when compared to data collected during Phase 1.

• CORBA support for RTSJ
RT CORBA does not address the mapping of the memory or thread types defined by the RTSJ. No RT
ORB would be expected to map client memory and thread types to servant memory and thread types.

• White-box RT clients
Black box style development of distributed real-time applications is not practical with the current ORBs.
Successful integration will require that client-application developers have white box knowledge of the
real-time servant. The current CORBA spec does not support black-box implementation of RTSJ clients

KM-8

Recommendations
We recommend …
• OMG develop standards for a RT CORBA that supports real-

time RTSJ semantics across the network.
• Evaluation of techniques for designing RT clients that use black-

box RT servants
• The ORBs be re-tested using…

• Client propagated priorities. This is a key step toward black-box
client development

• Ahead-of-time compilation. This is a necessary step to understand
NHRT performance

• Evaluation of alternative network protocols and publish-
subscribe middleware services like OMG’s Data Distribution
Services

• Evaluation of design strategies for the development of fault-
monitoring and recovery of critical, distributed RTSJ
applications.

	Raytheon Java DayEvaluation the RTSJ Distributed Platform
	Background
	Experimental approach
	Test Cases
	Sample Findings
	Sample Findings (2)
	Key Findings
	Recommendations

