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Background on Water Isotopes

Water isotopes are a good tracer for the origin, condensation, and evaporation history of an air parcel

Lighter isotopes preferentially evaporate
Heavier isotopes preferentially condense (More condensation leads to more depletion)

Isotopic composition of water vapor over the ocean is a well known function of temperature.

Rayleigh Model of Condensation

Reference for water isotopes is the
Standard Mean Ocean Water (SMOW) =
3.1 x 100*HDO/H,0
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OD of tropospheric water vapor varies
from approximately -79 (above
ocean) to -800 in upper troposphere.




Previous Measurements of Water Isotopes

*Global measurements of the isotopic composition of precipitation since the mid 1900’s have been
used to better understand surface and boundary layer hydrology (e.g., Daansgard, Tellus, 1964;
Araguas-Araguas and Froehlich, JGR, 1998)

*However these precipitation measurements do not necessarily reflect cloud processes because of the
tendency of rain-drops to equilibrate to the background isotopic composition as the raindrops fall and
therefore forgetting the isotopic signature of the cloud! (Friedman et al., JGR, 1962)

*Useful to measure the isotopic composition of both vapor and precipitation!

*Very few observations of the isotopic composition of water vapor exist!

Vapor pressure isotope effect and potential impact on atmosphere known for decades (Jancso & Hook, 1974; Ehhalt, 1973; Kaye, 1987).

First tropospheric measurements of HDO by Ehhalt (1970 in Hurricane Faith; 1974 in upper trop) showed Delta-D ~ -500 %o, not -800%o as
expected.

First stratospheric measurements of HDO by Scholtz (rocket, 1970), and by balloon flights of Pollock et al. (1980) and Murcray/Goldman
(Rinsland et al. 1984). BLISS (Webster et al. 1989) made first in situ TDL stratospheric measurement of HDO.

FIRS-2 (Johnson, Jucks, Traub, Chance, 2001) balloon remote stratospheric measurements H,O, HDO, H,'#0 from series of balloon flights
1989-97.

ATMOS (Farmer, Gunson et al.) stratospheric HDO data modeled by Moyer et al., 1996, Ridal 1999, Kuang et al. (2002) with Delta-D = -
670 %o0. Speculated on role of lofied ice.

Sample collection in air, lenticular, and cirrus clouds by Ron Smith et al. (1992-6) and Andreas Zahn (1996) confirmed theory of
equilibrium isotope fractionation, and found evidence ofice lofling.
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Retrieval Approach

*Simultaneous retrieval of HDO and H,O reduces systematic errors of the estimated
HDO/H,0 ratio (Worden et al., JGR, submitted)

*Keep a priori and initial guess for the HDO/H,O ratio fixed over whole globe so as to better
examine spatial variability
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Sensitivity of retrieval to the tropospheric
HDO/H,O ratio decreases with surface
temperature (or signal-to-noise)

Random error increases as surface
temperature (or signal-to-noise)
decreases

Random error sufficient to capture
regional and global variations of
HDO/H,0 ratio
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“Latitude effect” We observe more depletion with increasing latitude due to gradual
rainout of heavier isotopes as air moves pole-ward

“Continent Effect”
. Precipitation Measurement ==> More depleted over continents relative to ocean
. TES Vapor Measurements ==> No obvious continent effect

. Evapo-Transpiration source larger than expected?



Aura TES and WB-57 ALIAS
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TES and WB-57 ALIAS observations show similar distributions that lie within
condensation and evaporation end-member models
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*Global Distribution of tropospheric water vapor is well described by
combination of evaporation from ocean and condensation

*Observations below condensation models and above evaporation models
require additional water source terms or processes to explain and will be
discussed at the AGU



