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 State-based Specifications » Timed Formal Modeling
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» Graphical specification language for control programs,
in spirit of Timed StateCharts

» Extend Hierarchical Constraint Automata to timed behavior

1

T 1 < 270mins t2 < 4 mins 8
MAINTAIN entry = initiated
. att=
\ entry-
orient
9 10
ags g att=entry-orien
clock transitions conditioned N
initialization on clock variables \W
Mars Entry control program " *?

» clocks provide timing mechanism
> conditioned on time & state constraints
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+ Variant of Factored POSMDP (state not directly observable,

next state depends on current state & time spent in state)
el l:oncurrent Constraint Automata to timed behavior
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* For physical plants modeled as TCCA (POSMDP):
ty t t+dt ... t,+30+dt t,+30+2dt t,+30+3dt
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Bad news:
state space gets
much larger...

Good news:
can leverage existing
OPSAT engine!
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Model the system as a network of Probabilistic Hybrid Automata
Frame fault diagnosis as state estimation in this model

lighting system

Continuous state: flow X
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BIO-Plex plant growth chamber

Innovative features:
e non-linear dynamics

e mode transitions dependent on
continuous state

e Detect failures or mode changes

Flow Regulator

from subtle symptoms
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Track a set of mode sequences with a bank of Kalman Filters
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Experimental Results:
K-best filtering
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Model-based Hybrid M odel-based Executive
Program Hierarchical
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Pr
ogram (HHCA) !
Concurrent
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Model ™ Hybrid Estimation | | Reconfiguration
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Deductive Controller
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High-Level gods
Mission ﬁ Temporal Planner
Planning

Reactive, Tempora Planner:
A
ﬁ e Fast planning performed as graph search
e Encoding of non-deterministic choice

« Conditional planning via encoding of

t v

Deductive
Mode Estimator &
Reactive Planner

_

Model [—*
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High-Level godls
Mission ﬁ Temporal Planner
Planning

Input: Planning models specified as

~ RMPL models
ﬁ Processing: Transforms RMPL models

into intermediate HCA representation, then

from HCA to Temporal Plan Network
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Deductive
Mode Estimator &
Reactive Planner

_

Model —*
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High-Level gods
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Code for describing:

« Concurrent Task Management
* Resource Management

I

nstrain
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High-Level godls
Mission ﬁ Temporal Planner
Planning
RMPL Constructs:
« constraints ©
“ « conditional execution if c thennext A
« guarded transition unless ¢ thennext A
« full concurrency A,B
1 v
e Deductive
Mode Estimator &
Reactive Planner
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High-Level gods
Mission ﬁ Temporal Planner
Planning
TPN Representation
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High-Level godls
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RMPL Planning Model can be compiled

! “ into a Temporal Planning Network
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High-Level gods
Mission ﬁ Temporal Planner
Planning

Planner traces set of paths from start to end of TPN
that satisfy temporal & state constraints. Paths
| A correspond to temporally consistent execution threads.

‘ﬁ Start End
Onboard Sequencer

t v
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RMPL Programs

» Describe concurrent sensing, J Q
actuation and movements activities. | /\/\ \/\
» Choose specifies redundant J
strategies and contingencies. J
\

» [A,B] Specifies timing constraints.

(Group-Enroute() [1,u] ( Enroute
(sequence
choose (
(do-watching (PATH1=0K)
((Group-Traverse-Path(PATH1_1,PATH1_2,PATH1_3,RE_POS))[1*90%,u*90%])
)
(do-watching (PATH2=0K)
((Group-Traverse-Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)) [1*90%,u*90%])
))
(parallel
((Group-Transmit(OPS,ARRIVED))[0,2])
(do-watching(PROCEED=SIGNALLED)
((Group-Wait(HOLD1,HOLD2))[0,u*10%]))

» .
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Integrated Activity Planning & Path Planning:  Path Planning Method 1:
« Search a temporal plan network in best-first Explore state space using Rapidly-
order exploring Random Trees (RRTs)

» Dynamically compute collision-free paths for Location A: ~%
those plan activities that require moving startstate | Location B:
between locations and the estimated cost of goal state

flying along this path
+ Continuously interleave activity and path
planning to pursue the most promising plan.

Maneuver Automaton: Describes
a set of agile maneuvers with
respect to the vehicle’s dynamics

Collision-free path |
ost estimate = 20 units of fuel

>

@ Cost estimate = 10 units of fuel Path Planning Method 2:
-, wostestimate = TUunils ot lue Clausal Linear Programming

OO0 i

EW. Path Planning through Clausal LP E
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A simple example: + Mathematically solving the problem of vehicle
control normally involves straightforward Linear
Programming

» But the addition of obstacle avoidance introduces
an Integer Programming element

« This makes the problem difficult to solve “online”:
fast enough for actual vehicles in motion

« To resolve this we transform obstacle and
collision avoidance into a Constraint
Satisfaction Problem: For each obstacle, the
domain is split into four regions (above, below,
left, right), one of which is selected

* Integrating the selection of domains with the
standard vehicle control leads to a an algorithm
that can be used as a Hybrid CSP/LP Solver

* s#1=As,+Bu; State Evolution Equation

© s S w, efc. State Space Constraints

¢ X2 Xin V Xi £ Xinax V Vi 2 Yimin Vi £ Yinax Obstacle Avoidance (for all time i)

« Similar equation for Collision Avoidance (for all pairs of vehicles)
24
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Motivation:

» Want robust
autonomous systems.

» Extend traditional
scenario-based
testing to verification
and validation (V&V).

| Success |

Goals:

+ Verify RMPL model-based programs (control program + plant model)
against goal specification.

e.g., ((EngineA = Firing) OR (EngineB = Firing)) for Orbitlnsert()

+ Extract probabilistic information about program’s possible executions.
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* Conclusion!
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