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Abstract - When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase 
distributions desired for excitation of a phased array antenna are not steady state solutions of the goveming non-linear equations 
describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact 
solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of 
beam steering angle. 

INTRODUCTION 

Arrays of mutually injection locked oscillators have become of great interest because of their utility in 
providing properly phased excitations for the elements of a phased array antenna.[ 13 A number of such 
schemes have been proposed, fabricated, and tested.[2][3][4][5] These range from linear arrays of three to 
seven elements to planar arrays up to five by five elements. All of these arrays have been coupled on a 
rectangular lattice. When feeding phased array elements similarly disposed on a Cartesian lattice, these 
arrays provide linear phase distributions over the array aperture thus producing a scanned beam. By virtue of 
the well-known properties of injection loclung, phase control is achieved by tuning the resonant (free 
running) frequencies of the oscillators. If voltage controlled oscillators (VCOs) are used, these frequencies 
can be controlled via an applied bias voltage. Interestingly, the slope of the linear aperture phase 
distributions is controlled by adjusting the oscillator free running frequencies on the perimeter of the array 
only and, further, the needing tuning is constant along each edge of the array and antisymmetric across the 
array. Thus, in a planar array, only two independent control voltages are required. 

Recently, alternative lattices for coupling have been investigated for application in non-Cartesian planar 
arrays.[6] Of interest because of their isotropy and simplicity are the triangular and hexagonal coupling 
lattices shown in Figure 1. Note that boundaries of the unit cells of the one are the coupling lines of the 
other. It has been shown that, in the triangular scheme, planar phase distributions are exact solutions of the 
non-linear equations describing the steady state system behavior. (In fact, exact solutions of the dynamic 
equations have also been obtained.) However, in the hexagonal scheme, this is not the case. That is, the 
desired planar phase distributions are not solutions of the non-linear equations describing the steady state 
system except at certain discrete azimuth angles about the array normal. They are, however, solutions of the 
linearized differential equations (the continuum model) approximately describing the system behavior. Thus, 
we have conjectured that planar phase distributions are approximate solutions in the full nonlinear 
formulation and have shown numerically that the solutions of the full nonlinear equations are approximately 
planar. It would be useful to have an estimate of the size of the deviation from planarity exhibited by the 
exact solution. Derivation of such an estimate is addressed in this paper. Moreover, in obtaining the 
approximate estimate, it was discovered that an exact solution for the nonplanar phase distnbution could be 
obtained thus providing an exact expression for the deviation from planarity as a function of beam steering 
angle. 

THE STEADY STATE SOLUTION 

We begin with the nonlinear differential equation describing the dynamic behavior of one arbitrarily located 
oscillator located at the point (x, y) in an array coupled on a hexagonal lattice. 
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Note that there are three sine terms corresponding to the three nearest neighbors to which the oscillator is 
coupled. (The coupling phase is assumed to be a multiple of 2711.) With the time derivative set equal to zero, 
this equation relates the oscillator tuning to its phase in steady state. There is one such equation associated 
with each oscillator in the array resulting in a system of nonlinear equations relating the phase distnbution to 
the tuning distribution over the array. We now assume that the non-perimeter oscillators are all tuned to the 
same frequency and that the perimeter oscillators are detuned according to the prescription, 

integer. We now postulate a solution for the phase 
distribution, Kx,y), in the form of a planar distribution producing a beam pointed in the direction (eo, &) but, 
with the additional parameter Axy as shown below. 

Amlockis the locking range of the oscillators. 

4(x, y> = -?[ [ x - $)sine, cos4, + y sine, sin 4o + A4v 1 (3) 

Note that A#xy represents the phase deviation of the oscillator at (x, y) from the phase value corresponding to 
a planar solution. Thus, as A& approaches zero, the phase distribution becomes planar. The nearest 
neighboring oscillators are assumed to have the phase (3) with A&,, replaced with -A& . This postulated 
solution (3) is now substituted into the nonlinear equation (1) and, using trigonometric identities, 
manipulated into the form, 
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2nd where S = - sin 8, and d is the physical spacing of the radiating elements of coupled oscillators. From a& 
this the solution for A#xy which makes the postulated phase distribution a solution of the nonlinear equation is 
seen to be, 
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A#xy = 2 tan-' 

Substituting this value of Abxy into (3) produces the exact solution for the phase distribution over the array. 
As the steering angle, $, approaches zero, this indicates that the deviation of the aperture phase from 



planarity approaches zero as the square of eo k o t e  that maintenance of this aperture phase distribution 
requires a change in the tuning (2) by ~ A ~ , , A W , ~ , ,  . This, in turn, implies a change in the ensemble 

arrays this frequency change would be canceled. 

CONCLUSION 

frequency with steering angle. However, it array made of two such triangular 

Equation (5)  provides the desired estimate of the deviation of the exact phase distribution over the 
hexagonally coupled array from the desired planar distribution and this estimate is, in fact, and exact 
expression. The corresponding solution for the phase distribution is similarly exact and can be used to 
determine the radiation pattern modifications due to this phase aberration. 
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Figure 1. Triangular and hexagonal lattices. 




