~07/07/03

)

MON 13:56 FAX 1818 393 4918 AIRS PPOJECT

Post-Launch Lessons Learned
from the AIRS Science Data Processing System

Evan M. Manning’, Steven Z. Friedman, Albert Y. Chang
Jet Propulsion Laboratory, California Institute Of Technology
4800 Oak Grove Drive, Pasadena, CA 91109-8099

ABSTRACT

The AIRS Science Data Processing System, responsible for processing data from the 4-instrument AIRS suite, includes
14 separate executable programs and produces dozens of products. These executable programs and products conform to
ECS standards for processing and archival at Goddard Earth Sciences DAAC. These standards include format and
metadata constraints, and the PGE paradigm. Before launch the AIRS team defined and implemented all PGEs, created
simulated test data, verified PGE performance with simulated and ground test data, and verified PGE integration within
the GES DAAC processing and archiving systems. To support validation and continued software development, Jet
Propulsion Laboratory (JPL) developed a limited shadow production system, and received all instrument data after
launch. This in-house system was not designed to process and serve all data, but rather to run experimental versions of
our software and to run additional non-deliverable programs in support of validation. These pre-flight preparations paid
off, and the first year aficr launch has been very active for the AIRS science data processing group. Still, lessons can be
learned from our experiences during our first year of data processing and post-launch sofiware development. These
experiences and observations may be useful to science seams developing future Earth observing instruments.

Keywords: AIRS, AMSU, HSB, Science Processing, PGE

1. INTRODUCTION

For almost as long as the flight hardware was under development, the AIRS Science Processing Software (SPS) and the
Team Leader Science Processing Facility (TLSCF) Data Processing System (TDS) was being designed, developed, and
tested. Both the science software and the TDS were readied for data processing activities that were to commence shortly
after launch. A series of successively more complex tests were conducted during the last months before launch to stress
the software and the system, to ensure that they were ready. Initially, TDS hosted data processing tests were performed,
testing the system in isolation, to stress local processing capabilities and the science processing software itself. Nearer to
launch, test data was streamed from the GES DAAC to JPL, simulating post-launch data at expected transmission rates.

Once the data was received at JPL, thc TDS was used to process and archive it locally. In all pre-launch exercises, the -

SPS and TDS performed well and as designed. While these tests provided assurance and comfort to its developers, there
was still a question in everyone’s mind whether the system would perform up to expectations when the first AIRS
science data was transmitted from the Aqua spacecraft. That would depend on whether SPS and TDS could handle actual
data transmitted from Aqua once the system was placed into orbit. In the end, it would boil down to whether the AIRS
SPS and TDS would be robust enough to deal with on-orbit data volumes and unexpected data conditions after launch.

The AIRS Science Processing Software consists of several programs or Program Generation Executives (PGEs) and
Process Control Files (PCFs). The PGEs themselves contain executable code and/or scripts that perform computational
operations, while the PCFs provide run-time commands and file staging information. AIRS PGEs and PCFs conform to

* evan.m.manning@jpl.nasa.gov; phone 1 818 354-1172; http://www jpl.nasa.gov/airs/; Jet Propulsion Laboratory,

California Institute Of Technology.

dood

http://www.jpl.nasa.gov/airs

07/07/03

MON 13:57 FAX 1818 393 4918 AIRS PPOJECT

ECS’ standards for programming structure and design. AIRS PGEs are organized into the following categories: Level
1A — unpacking satellite data and geolocation; Level 1B — calibration; and Level 2 — basic science product generation. In
addition a series of specialized PGEs arc used to develop (1) Summary Browse Products (selected Level 1B and Level 2
products) and (2) Match-Up Products, a specialized sampled data set used for validation campaigns. The AIRS SPS has
been designed to fully conform to ECS standards for PGE construction and utilizes PCFs to provide runtime directives
and file staging information at run time. Additionally, the AIRS SPS utilizes ECS toolkit routines for standard I/0, time
and date conversions, geolocation, and metadata construction. .
The TDS, used for limited data processing at JPL, was designed to emulate DAAC data processing and archival
operations. A specialized suite of hardware and softiware was designed and built to provide the capability to process
Level 0 data through Level 2 and archive all standard and intermediate data products, utilizing the same PGEs developed
for use at the GES DAAC. Development of TDS itself posed several challenges, but its operation was instrumental in
delivering functioning PGEs to the GES DAAC before launch and in continued development and enhancement of PGEs
after launch. In addition, the TDS provided the AIRS Validation Team with a processing environment that could be used
to develop all data necessary for validating AIRS Science Data Products.

2. THE AIRS SUITE OF INSTRUMENTS AND MISSION

AIRS is a key facility instrument launched on the EOS AQUA platform on May 4, 2002. The AIRS instrument on Aqua
is collocated with the EOS Advanced Microwave Sounding Unit (AMSU-A) and the Humidity Sounder for Brazil
(HSB). When combined, these three instruments provide the capability to obtain temperature and humidity profiles
through the atmosphere, unsurpassed by any other EOS instruments in orbit today.

The AIRS instrument measures upwelling Infrared radiances at 2378 frequencies ranging from 3.5 pm to 15.4 um. A
limited number of visible/near-infrared (VIS/NIR) channels are also present to provide diagnostic support for the
temperature and humidity sounding. The AIRS scan geometry produces a +49.5° cross-track scan swath with a 1.1°
instantancous field of view to provide twice-daily coverage of the globe from a 705-Km altitude, on a 1:30 P.M. sun
synchronous orbit. Each AIRS scan line is completed in approximately 2.7 seconds and consists of 90 footprints, with
cach footprint covering 45 km diameter arca. For AMSU-A, the scan rate is once every 8 seconds, three times longer
than it takes for a single AIRS and HSB scan.

{FOV are optimalty aligned Thus, while AIRS and HSB scan three lines
1i-wos-ams | fOT 8 total of three lines of data for a total 270
scanned footprints, AMSU-A scans a single
line of data consisting of 30 footprints., with
-~ MADIA each footprint covering 45 km. This
geometry, scan, and footprint a characteristic
leads to the alignment of these instruments on
WA HSR board the Aqua platform as illustrated in
Figure 1.

3% Undetl;
3% Nwdir »

337 AMSU-A

The EOS Data and Operations System
AIRS SCAN GEOMETRY (EDOS) at the GSFC DAAC processes Aqua
» Altinude: 705 km spacecraft data to Level 0 products, resulting
¢ Scan Period: 2.667 5 B . .
Direction > Grosmd foatprints 20/Scan in the generation of Production Data Set
of Fliight (PDS) files of instrument science and

engineering packets. EDOS processing

A

. removes redundancy and time orders the data
Figure 1. Scan geometry for AIRS, AMSU-A and HSB.

“ECS is the EOSDIS (Earth Observing System Data and Information System) Core System, is both a process and a
system for defining how PGEs should be constructed to perform science data processing at NASA DAACs. For AIRS,
the Goddard Space Flight Center (GSFC) Earth Sciences (GES) DAAC processes and archives ail AIRS data,

[d1o05

07/07/03

MON 13:58 FAX 1818 393 4918 AIRS PPOJECT

packets. The Level O data is then scnt to the GES DAAC for data processing. There, each AIRS PDS file, containing
two hours of instrument data, is processed by the AIRS SPS. Some of the Level 0 PDS data is sent to JPL where it is also
processed by the JPL TDS as a shadow operation.

PDS files are processed by the SPS software to generate 6-minute granules of Level 1A and Level 1B data for each of
the AIRS instruments. Level 1A and Level 1B AMSU granules contain 45 scans of AMSU data, while Level 1A and

Level 1B granules of AIRS and HSB data, with their higher scan rates, contain 135 scans of AIRS and HSB data

respectively. For AMSU-A, each 6-minute granule contains 1350 footprint observations (gridded 45 observations along
track by 30 observations cross track) covers an area of approximately 45 x 45 kilometers of the surface of the Earth.
Later, during Level 2 processing, each retrieval footprint utilizes one footprint of AMSU-A data and 3 x 3 footprints of
HSB and AIRS data to retrieve the required geophysical parameters as specified in Table 1.

3. AIRS SCIENCE PROCESSING SYSTEM (SPS) ARCHITECTURE

The AIRS SPS, developed at JPL, is delivered to GES DAAC for generation, archive, and distribution of AIRS standard
products. After validation, users of the AIRS science products can access AIRS products through the GES DAAC’s Data
Pool (on-line cache) and Web-Hierarchical Search and Ordering Mechanism (WHOM) or the EOS Data Gateway
(EDG). The design of the AIRS SPS takes advantage of the definition of standard product size (6-minute granule) in
order to develop a system that is easily distributable over a heterogeneous operational environment and is also capable of
taking advantage of parallel processing of science data packets. AIRS science data products arc generated in three
distinct phases: i ;

Phase 1 - Level 1A processing is performed by three Product Generation Executables (PGEs) for AIRS, AMSU, and
HSB instruments. Each PGE performs the following for each instrument:

Synchronizes Level 0 data packets

Unpacks and reformats Level 0 data packets

Converts engincering parameters to engineering units

Performs geolocation (i.e. calculates observed location, altitude, etc.)

Merges and archives engineering and calibration data

Puts science ground footprints from instruments into swath format and generates Level 1A swath products.

Phase 2 - Level 1B processing is performed by four PGEs for AIRS (Infrared, and visible), AMSU, and HSB. Each
Level 1B PGE reads the Level 1A science and calibration data from appropriate instrument and calculates the radiances.
Corrections for polarization, non-linearity, and drift are handled in this phase.

Phase 3 - Level 2 processing is performed by a single PGE. This PGE reads Level 1B data from all instruments and
performs a mathematical process called “refrieval” that calculates temperature and humidity profiles as functions of
atmospheric pressure.

Processing at each of the three phases described Level 2 Product Units Accaracy
above is performed by PGEs. Each PGE is a Temperature profile Kelvin 1.0K
standalone Unix process that is activated to Humidity Profile gm/kgm 20%
perform a task. Multiple instances of the same Total Perceptible Water mm 5%
PGE (process) can be activated concurrently to] Fractional Cloud Cover None 0.05
perform the same processing on different Cloud Top Height Km 0.5km
granules of science data, The AIRS sps | Cloud Top Temperaturc Kelvin 10K
architecture takcs advantage of this capability as Land Skin Surface Temperature Kelvin 10K
, . Land Surface Spectral Emissivity None 0.05
well as the design of the AIRS stundard science Ocean Skin Surface Temperature Kelvin 0.5K
granule size to enable parallel processing of its IR Spectral Cloud Emissivity (3-16um) None 0.05
data. The architecture of the major AIRS SPS Total Ozone Burden Dobson 15%
PGEs allows for end-to-end processing of Cloud-Cleared Brightness Tem. Kelvin 1K

independent pgranules, with no or little

Table 1. AIRS Standard Products

doos

07/07/03 MON 13:58 FAX 1818 393 4918 AIRS PPOJECT

doo7

dependence on other adjacent granules for data (Figure 2).

As Leve] 0 data becomes available,
appropriate Level 1A PGEs are activated
by the production system based on
production rules at the GSFC DAAC.
Each Level 1A PGE receives Level 0 data
from the GSFC DAAC archive and
processes it into 6-minute granules of
Level 1A data. Each Level 1A PGE can
process data independent of other Level
1A PGEs and therefore, Level 0 data from
all instruments can be processed
concurrently. As shown in Figure 2, the
Level 1A PGE used to process AIRS data
splits the data into individual Level 1A
data products, infrared and visible.

Upon availability of Level 1A products,
Level 1B PGEs are activated based on
: production rules that govemn the
processing of Level 1B PGEs. Level 1B PGEs process each 6-minute granule of Level 1A data and generate 6-minuté’
granules of Level 1B (calibrated) products. Each Level 1B PGE performs its processing independently of other Level.
IB PGEs and therefore, multiple Level 1A granules can be processed concurrently. In addition, as in the case of Level
1A PGEs, multiple instances of each Level 1B PGE for an instrument (i.e. Level 1B AIRS PGE) can be active at the
same time, allowing the processing of different Level 1A granules for the same instrument data concurrently. Level 2
processing requires availability of data from all instruments (AIRS, VIS, HSB, and AMSU) and therefore, it is activated
when all appropriate granules of instrument data are available. For each 6-minute set of instrument granules (AIRS,
VIS, HSB, and AMSU), the Level 2 PGE retrieves geophysical parameters and produces standard Level 2 products as
specified in table 1. Multiple granule sets of Level 1B products can be processed at the same time by activating multiple
instances of Level 2 PGE.

Figure 2. AIRS Science Processing System Architecture and Major PGEs.

Each of the PGEs described above can be distributed over a network of heterogeneous CPUs. Although the operational
environment at the GSFC DAAC is centered exclusively on the SGI computers, the JPL TDS operational environment as
described below uses a variety of Unix and Linux based CPUs to perform the same function.

4. TLSCF DATA SYSTEM (TDS) ARCHITECTURE

The AIRS Team leader Science Computing Facility (TLSCF) Data System (TDS) provides an automated operation
environment to produce AIRS science data products that are needed to support the AIRS post-launch science data
calibration, verification, and -validation activities scheduled to take place during the first twelve-month of mission
operation. Figure 3 shows the architecture of the TDS. The TDS processes AIRS suite data similarly to the DAAC in
that it utilizes standard PGEs and PCFs. However, the TDS does not use the same system architecture and controls
implemented at the DAAC. Instead, a hybrid system was developed at JPL to support specific needs of the AIRS Science
Team Leader and the greater Science Team.

The TDS is a complete end-to-end software solution for processing AIRS suite data, starting with a File Ingestion
Subsystem, at the front end, to ingest AIRS Level 0 and other input data. The Job Planning Subsystem, that implements
the production rules (i.e. prerequisites), is activated upon receiving data production request created by the TDS operator
via the Job Entry Subsystem. Once the production prerequisites are satisfied, the production job is marked ready. The
Job Scheduling Subsystem takes over at this point to create and archive the data products. Given the vast amounts of
data to be processed and archived, this system would not complete without a centralized File Catalog and Management
Subsystem. These elements are described in more detail below:

07/07/03 MON 13:59 FAX 1818 393 4918 AIRS PPOJECT idoos

Eile Ingestion Subsystem (FIS). Upon receiving email notification from the data provider, the File Ingestion Subsystem
retrieves the external data product files that were deposited by the data provider in the external data file spooling arca.
For each data product file, it then creates a metadata file based on the predefined metadata policy for a specific product
file type and data source.

Both the external data file and the TDS-created
Moved by FOMS metadata file are submitted to the File Catalog

/ \ and Management Subsystem. The File Catalog
il and Management Subsystem subsequently
""'"ﬂ‘> - Mierarchical Pile parses the mctadata file to create catalog

i information and stores the data file in its file
repository.

ﬁ Subsystern enables the TLSCF operator to
enter a production request. It then decomposes

é Job Entry Subsystem (JES). The Job Entry
B e the production request into one or more PGE
e — ol Wi b <“:'" jobs. For each PGE job request, the JES creates
e gems) a Job Description File (JDF) that is
"submitted" to the requested jobs spooling area
for processing by the Job Planning Subsystem.

=i

§.¢.
&
Job Planni Subsyste JPS). The Job
Planning Subsystem periodically retrieves JDF
for the newly requested jobs from the
e o) [Yo Plenning requested jobs spooling area. Once a requested
urs) job is successfully inserted into the internal

pending queue, the JPS removes the
corresponding JDF from the spooling area. The
Figure 4. TDS Architecture JPS uses the predefined PGI:Z productiqn rules
to create a dependency list regarding the
required and optional input files for each input

PGE job that it received. Periodically, the JPS checks the latest available file catalog information to determine if the
input dependencies for a given PGE job request have been satisfied. When all the dependencies for a given PGE job are
satisfied, the JPS creates a JDF for the ready job that contains information needed to initialize the PGE job execution.
Then, the JPS submits the ready job to the Job Scheduling Subsystem for execution.

() =)=

Job Scheduling Subsystem (JSS). The Job Scheduling Subsystem periodically retrieves new ready JDF from the ready
jobs spooling area. Once a ready PGE job is successfully inserted into the internal working queue, the JSS deletes the
ready JDF from the spooling arca.

The JSS allocates a work area (i.e., computer disk space) and creates a Processing Control File (PCF) for each ready
PGE job with information provided in the corresponding JDF. The PCF is an ASCII text file that contains all the runtime
parameters required to execute the applicable PGE. As the system resource becomes available, the JSS executes the PGE
job and archives the generated products in the File Catalog and Management Subsystem.

File Catalog and Management Subsystem (FCMS). The File Catalog and Management Subsystem is built on top of the
Distributed Object Manager (DOM) developed at the Jet Propulsion Laboratory and has been in operation since 1997 to
support various Deep Space Missions. The Distributed Object Manager includes a homegrown on-line file catalog
system. The Distributed Object Manager provides command-line programs that allow user to store and catalog a new
data file, search for an archived file, and to retrieve an archived file. In addition, DOM also provides application level
interface libraries (in C++ and Java) for other software applications to store, search and retrieve files.

_07/07/03 MON 13:59 FAX 1818 393 4918 AIRS PPOJECT @009

5. AIRS SCIENCE PROCESSING SOFTWARE — LESSONS LEARNED

All AIRS SPS PGEs performed well during the first year after launch. During that period, three major software updates
were produced and delivered on schedule to the GES DAAC and placed into operations. The success of the AIRS SPS
can be attributed to an iterative development and test approach, where all PGEs evolved over a period of time. Each PGE
was incrementally developed and tested utilizing simulated data streams, both at JPL and the GES DAAC.

Other implementation and design decisions, many made early on during the evolution of AIRS SPS, have affected the
effectiveness of AIRS SPS. They are outlined in the following sections.

5.1 Separation of Instrument Data

Keeping data scparate by instrument throughout Level-1 processing and the further separations of AIRS IR from V/NIR
and engineering from scene and calibration data have proven highly successful. For product users, this scparation
minimizes the size and complexity of data sets needed to perform specific tasks. For example, an analysis of AIRS
instrument temperatures requires only the AIRS engineering product, and any AMSU analysis requires only the very
small AMSU products. The concern with this approach was that granules from separate instruments might not
correspond to the same regions when that data is finally combined in Level-2 processing.

AIRS's original inter-instrument synchronization schemes would have required Level-1A to make products containing
information from multiple instruments or to compare data streams to ensure that they are synchronized in time and
location. This would have led to a combinatorial explosion in special cases to be handled where different instruments are
in different operational modes. Instead this concem was addressed by carefully defining granule boundaries in a way that
corresponds closely with the mechanism used on the spacecraft to synchronize the instruments, and by adding checks in
Level-2 to confirm that data processed together corresponds to the same time and place. No problems have been
encountered with this approach. In fact we easily handled pre-launch instrument test data, which typically had data from
only one instrument in each data set. Similarly, after launch, when instruments were turned on one-by-one the data could
be processed and analyzed in a natural manner.

5.2. Geolocation in Level 1A

Geolocation algorithms are usually included in Level 1B PGEs. However, for AIRS, a decision was made to include
these algorithms as part of Level 1A processing instead. The advantage to performing geolocation earlier in the
processing stream is that Level 1A products will include location information, making them more useful to diagnose
certain data and instrument related problems. For example, it becomes easier to check if a particular anomalous event
coincides with the passage of the spacecraft through the South Atlantic Anomaly. But disadvantages include increased
volume of Level 1A products and increased complexity in the otherwise lightweight Level 1A process. Thus, a tradeoff
between size of the Level 1A data products versus their potential utility was made.

For AIRS, Level 1A product size was not significantly impacted because AIRS's 2378 channels of IR data dwarf the
volume of geolocation data. AIRS chose to make geolocation part of Level 1A so that geolocation information would be
available to users of Level 1A data.

Many years after this decision to include geolocation within Level 1A data processing was made, the AIRS Project
decided not to release AIRS Level 1A data to the public. Consequently, the only users of Level 1A data are AIRS Team
members. But these team members have benefited from having geolocation information with Level 1A data both for
investigating anomalies in instrument engineering data and for making sense of the first ook at calibration and scene
data. The part of geolocation information that is most useful for these purposes is not the scene latitude & longitude,
which is the core geolocation product for Level 1B users, but other ancillary information such as spacecraft position
data, moon-in-view indicators, land/water fraction, and solar glint distance. These geolocation parameters enable the
investigation to determine if events such as cooler resets and observation overflow were associated with the South
Atlantic Anomaly, polar horns, glints, etc.

07/07/03 MON 14::00_FAX 1818 393 4918 AIRS PPOJECT do1o

A few uncxpected drawbacks were also found to result from this decision to include geolocation in Level 1A processing.
AIRS geolocation includes land fraction and surface clcvation as beam-weighted averages over 15 kilometer or larger
spots. These calculations are time-consuming, making the Level 1A PGEs slower than they would otherwise be.
However, the overall end-to-end system execution time is not changed, only the duration of Level 1A processing.
Finally, this decision also impacts the AIRS Project’s delivery schedules. Typically at one year after launch, the Level
1A PGE would be considered in its final form. However, residual uncertainties in instrument pointing have delayed final
geolocation adjustments, and updates to the Level 1A PGE are still expected during the second year after launch.

53. HDF-EOS Swath Format

Use of HDF (Hierarchical Data Format, a portable binary format) for production of all product files was mandated by the
EOS project. In addition they strongly encouraged us to use the HDF-EOS dialect, specialized to structures most often
seen in remote sensing data. AIRS uses HDF-EOS Swath for all Level 1A, Level 1B, and Level 2 products. The HDF-
EOS Swath structure maps very intuitively to the structure of these basic AIRS products, and no problems have been
found using HDF-EOS across architectures. However, HDF-EOS swath does not support all features of HDF, in
particular it lacks a facility for annotating individual fields. It is possible to directly access the underlying HDF facility,
but AIRS chose instead to conform precisely to the HDF-EOS Swath format and omit annotations.

Internally the AIRS team has adapted relatively easily to HDF-EOS swath formatting, using the HDF-EOS capabilities
of MatLab and IDL to help build tools. As yet there are still relatively few external users, and no complaints have been
received.

The AIRS Projcct experienced less success using HDF-EOS data formatting where data is not structured as a continuous
series of satellite observations. JPL worked with staff at GSFC’s Earth Science Data and Information System (ESDIS) to
develop a format for the NOAA PREPQC quality-controlled radiosonde product, which EOS did not want to store only
in its specialized BUFR binary format. We selected HDF-EOS Point format, which is designed to facilitate storage of
data sets consisting of isolated observations. However, in this case we found that HDF-EOS data-mapping to be less
satisfactory. Point formatting imposes arbitrary limits on the numbers of fields per “level,” forcing us to add an extra
nonintuitive layer of structure. And because HDF-EOS does not pack data fields, we ended up with much larger
products containing a small subset of the contents of the original.

AIRS also developed a highly specialized data product to support validation activities. This product, termed a "Match-
up" Product, contains AIRS instruments suite data for footprints near selected radiosonde locations. Although matchup
data has the same underlying geographically "scattered" structure that led to the selection of HDF-EOS Point for
PREPQC data, AIRS utilized HDF-EQS Swath formatting for storage of Match-up data. HDF-EOS swath freed us from
the limitations of HDF-EOS Point data formatting and also facilitated the employment of some tools and PGEs
developed for our typical 6-minute granule science data files. However, there is a trade-off here as well. The mapping of
HDF-EOS structures to this data is not as intuitive. JPL defined the "along satellite track” dimension to skip around the
globe in the order of observation, instead of forming a continuous set. Still, in the end, the use of Swath formatting for
Match-up files proved to be effective. :

54. Granule Definition

An important trade-off from the standpoint of usability is granule size. AIRS originally considered granule sizes of one
orbit, one-half orbit or one-quarter orbit. However, the AIRS Project realized that users who wanted just polar data, or
just tropical just South Pacific data etc., would all end up with large files from which they must subset. Another concern
was that for such large granules, granule metadata would be of little use. Metadata are the per-granule information that
can be used to select data to order. They include for AIRS such information as percent cloud cover, percent land,
bounding latitude/longitude rectangle. For large granules these would all tend toward global means.

Instead, the AIRS Project decided to utilize a granule definition that makes a granule as compact as it can be without
creating too many granules per day. A natural size is suggested by the observed swath width, which is about 1700 km.

07/07/03 MON 14:01 FAX 1818 393 4918 AIRS PPOJECT do11

This is roughly the length covered in 4 1/2 minutes of observation. A whole number of minutes per granule is
convenient for users, but AIRS has an 8-second scan cycle, so only multiples of 2 minutes would have a whole number
of scan cycles, We considered 4-minute, 6-minute, and 8-minute granules, settling on 6 minutes as the best compromise.

The six-minute size has proven very convenient. Product files are all of manageable size (121 kilobytes for ihe largest,
LIB infrared radiances), 240 granules per day is a manageable number, and having ten granules per hour works out
well. One can tell at a glance that granule 120 will correspond to a time near 12:00 UT.

The details of when granules start are more confusing for users. These rules are designed to mimic the inter-instrument
synchronization process on the Aqua platform (described in section 5.1 of this paper). By the current rule the last
granule of a day starts 34 seconds before the end of its nominal day and contains data mostly from the next day. A
minor adjustment to the rules could have made this part more intuitive.

5.5. Target Environment Scope

The original target environment for AIRS SPS software is the ECS (EOSDIS Core System) software environment as run
at the GES DAAC. The ECS environment placed many constraints on PGEs to run there, including: restricting the
number of PGE instantiations per day, limits on the amount of execution time per each PGE’s instantiation, restricting
all I/O to utilizing the SDP Toolkit, and the prohibition from using environment variables or command line directives.

AIRS designed its PGEs to conform to these constraints, and in general, they have served us well. JPL's own
development and test systems need to run the software while the software is being developed. Additionally, JPL
processes instrument test data to support instrument and.spacecraft testing. The TDS processes significant amounts of
real downlinked data. The TDS was developed to conform to ECS specifications for PGE invocation, data staging, and
product generation. The TDS has handled a myriad of data files over the past year, and our localized ECS simulation has
performed adequately.

While the ECS centric implementation paradigm has suited JPL and the GES DAAC well, a number of new customers
have emerged for AIRS software over time, and they have not benefited in the same manner. The National Oceanic and
Awmospheric Administration’s National Environmental Satellite, Data, and Information Service (NOAA-NESDIS)
developed a rear-real-time AIRS data processing system to process as much AIRS data as possible for redistribution to
numerical weather prediction centers within 3 hours of observation. Also, Direct Broadcast downlink stations will
receive AIRS data whenever the Aqua satellite is over their horizon. These local data processing centers will process
data for local information content. JPL wrapped the AIRS software in scripts that emulate the ECS ¢nvironment. As
we've added customers these scripts have become more and more elaborate. While these scripts do work adequately,
they were not designed with knowledge or intent to support our growing pool of end-users. Finally, as new projects
begin developing code, they projects may want to use parts of the AIRS software as well. In retrospect, if the full scope
of these applications had been anticipated from the start, SDP Toolkit functionality could have been wrapped and
isolated from AIRS algorithmic code. '

5.6. Testing

SPS testing started early, using simulated data based on weather models. This data was successively converted to
simulated Level 2, Level 1B, Level 1A, and Level 0 by simulators written before the corresponding PGE was
developed. Level 2 simulation consists of sampling and extrapolation; Level 1B simulation models atmospheric
radiative transfer; Level 1A simulation models signal propagation through the AIRS suite of instruments; Level @
simulation models instrument and spacecraft packaging of data for downlink. These models produced mostly ideal data,
though a limited number of expected variations in input were also tested.

In the last year before launch two additional sources of test data were added to the mix: instrument test data and
(simulated) test data routed through real upstream ground system. These data sets allowed us to identify and correct

07/07/03 MON_14:01 FAX 1818 393 4918 AIRS PPOJECT

most Level 1 issues before launch and even allowed us to help instrument and ground system engineers identify issues in
their areas.

Frequent end-to-end testing, successively bringing in new and/or improved PGEs, adding DAAC to JPL data flows, and
finally receiving simulated data from Aqua satellite receiving stations proved to be effective and adequate for mission
success. In the first year after launch, no major failure of any operational version of AIRS PGEs has been encountered
The system continues to perform well, both at JPL, the GES DAAC and at NOAA-NESDIS. (Delivery ‘of Direct
Broadcast code was not scheduled during the first year after launch.) Still, the testing regime could always be improved.
All AIRS testing is based on “success oriented” scripts, and there has not been enough testing of many failure states and
conditions.

5.7. Science Team Interface

The AIRS Project directly incorporates Level 2 algorithmic code provided by Science Team participants at a variety of
universities and government centers. The AIRS team at JPL performs the role of software integration. Also, when need,
JPL modifies the Science Team developed software to conform to AIRS and ECS standards. JPL has not reenginecred or
redesigned any of the Level 2 code to date, favoring an approach of keeping it recognizable to its originators. Developers
at remote institutions, under AIRS overall cognizance, continue to perform algorithm enhancements and bug fixes.

While this approach has succeeded overall, it has not been without its problems. First, it is important to foster a team-
oriented involvement. We have been most successful with Science Team organizations where their staff takes an active
interest in the success of the overall product. We have found that the best code is developed by those individuals,
although at remote location, take ownership and responsibility for delivering quality Level 2 components and
communicate frequently with the JPL development staff. The largest negative impact to this development approach has
been to restrict JPL’s ability to reengineer the code to operate more efficiently in the DAAC environment. While this has
not been a problem to date, the system would certainly perform better if Science Team members would have delivered
prototype code to JPL, and JPL would have been responsible for the overall PGE’s development. Again, the Level 2
PGE does perform up to performance specification at the GES DAAC, and the averall benefit of keeping the Science
Team members directly engaged in the code outweighs any necgative externalities associated with the development
paradigm.

6. TDS LESSONS LEARNED

The TDS, our primary environment for testing ncw software releases and for producing validation data sets, has
performed well over the past year, has met all our basic nceds. However, the development of a hybrid data processing
system always has its positive and negative points. The following are findings related to TDS:

6.1. Keep As-built Documents Up-to-Date

The TDS code was created over a 1.5-year period by a small team using a spiral development cycle. Each cycle of
requirements, design, implementation, and integration and test lasted approximately 4 months. A set of requirements and
design documents were written for the initial version. For subsequent versions, only delta-documentation was written.
These described only the new requirements and design changes that were implemented in that cycie. Using delta-
documentation seemed to make sense, because it was easy to review upcoming changes and traceability, and to track
progress during each cycle.

After launch it was requested that a set of as-built documentation be created. This turned out to be a time consuming task
even though the process throughout had been documented. The lesson-learned is that delta-documentation is useful for
executing each cycle, but the as-built documents should also be brought up to date at the end of each cycle.

do12

07/07/03

MON 14:02 FAX 1818 393 4918 AIRS PPOJECT

6.2. Data Catalog File Catalog Should Have Open File Access for Users

The file cataloging system selected for use by the TDS is a JPL-built system, the Distributed Object Manager (DOM),
which has been adopted by many of JPL's dcep-space missions. All data products produced at the TDS are ingested into
DOM, which catalogs the metadata and moves the product file to an online storage location. DOM provides APIs,
command-line and graphical interfaces to allow TDS data users to search the catalog for files based on metadata.

One aspect of DOM is that the data files themselves are stored in an open UNIX file system. DOM uses a logical
directory structure based on data-date and type (collection / year/ month/ file-type or collection / year/ month/ day/ file-
type, depending on type). Users querying the catalog are returned a UNIX link or fully resolved path 1o the files that
match their search criteria.

The open file sysiem and simple directory structure has the advantage that users knowing only the data date and file type
of interest can by-pass the catalog search altogether, provided the filenames are readily interpretable. This is ccrtainly
the case for all TDS-generated L1-L2 product files; but not necessarily the case for Level 0 S/C or instrument files from
the DAAC, which have names that encode their creation time, not the data time.

We had expected that once the science team and PGE development team realized the utility searching the catalog
metadata, they would adopt that interface. However, even with more than 1 year of data in the system (2 million files)
this has never happened, users near-universally resort to navigating the file directory. In the end, only the TDS software
and those involved in TDS operations use the data catalog searching capabitity.

6.3. Flexibility to Handle Multiple PGE Versions is Crucial

During the initial requirements stage, the AIRS Project anticipated that it would only be necessary for two 2 PGE
versions to be in use within the TDS concurrently, the baseline and latest test versions. Nevertheless, we designed the
flexibility to handle any number of PGE versions. Today we routinely are processing 3 or more versions in a single
week (baseline, n*test, GES DAAC validation, etc.).

This capability is facilitated by having high definition in the AIRS PGE Version specification itself, e.g. ¥2.3.6.1. The
first 2 numbers have been prearranged with the Goddard DAAC based on scheduled PGE deliveries (e.g., version 2.7 to
be delivered on such-and-such date) and effectively offer only one digit of resolution. The third number is incremented
every time there is a delivery to the TDS. The final number is for nightly developer-builds out of configuration
management. This ensures TDS has unique version numbers different from that of developers executing their local code.

The full PGE Version is captured in the AIRS filename to minimize confusion of where a file originated. Also for test-
runs, the Local Version ID string is placed in the file name, as a further version discriminant. This is used to encode
special options that were exercised in the test run (e.g., "RegressionOff").

6.4. Job Dependency Implementation Based on Files, not Jobs has Plusses and Minuses

TDS implements the AIRS PGE production rules based on file dependencies. For each Job, the data-time of each input
file is known. Further specifications allow the choice of the input collection (e.g., test-type, baseline) and constraints for
minimum and maximum PGE Version (for AIRS files) or for minimum and maximum creation dates (for externally
generated files). The production rules are enforced by having Jobs block in the JPS until it finds all their input files in the
catalog (or until the Job times-out).

The alternate approach, which is that provided by commercial Job schedulers, is based on Job dependencies. In this
approach, Jobs are strung together in a dependency graph (e.g., a particular L1b job starts running when a set of L 1a Jobs

completc). In this scheme, simply defining a Job that waits for a file would accommodate the arrival of an external input
file.

10

@o13

07/07/03

MON 14:02 FAX 1818 393 4918 AIRS PPOJECT

The use of file dependencies works well in TDS because this is the natural way PGEs are defined. Each new Job can be
specified independently of other Jobs in the system (however, the Operator must have some knowledge of what files and
product versions will be produced by these other Jobs). If a Job dependency scheme had been implemented, the Jobs
would have had to be defined to include the archival of products that were generated, since this condition is assumed for
downstream Jobs. The result would have looked very much like a file-dependency implementation.

The major downside of the direct file dependency approach is that executing Jobs don't always praduce all their expected
outputs, Each AIRS PGE has a complex set of rules to determine when to suppress creation of an archivable output file
(e.g., all calibration coefficients are bad for a data granule). Each AIRS PGE, depending on type, has 20-2000 input
files. If any one of these files is missing, a Job blocks despite all upstrcam Jobs having completing normally. These
blocked Jobs have to be manually evaluated and cleared by the TDS Operator.

6.5. Simple-Minded Job Priority Naming Scheme Works Surprisingly Well

The specification of a Jab in TDS is captured in an XML format Job Description File (JDF). By the time a Job can be
executed, each JDF contains the full resolved path-filename of all input files and identification of the PGE type (e.g.,
L1b-VIS) and PGE Version (e.g.,, 2.6.1.1) to be run. A collection of Jobs is simply a directory full of JDF files.
Prioritization of these Jobs in terms of the Job scheduler must either use some file property (e.g. creation time), some
entry within the file, or the filename. Within these constraints, a natural parameter to build a priority scheme around is
the filename, since this can be decoded without having to read the file contents, and can be changed by Operator after the
file is created. Adopting natural alphabetical ordering of the filenames as the priority ordering extends this simplicity.

The form of a workable JDF naming convention was derived through some careful thought and experimentation. In the
end, the convention adopted was based on a priority tag + Job descriptor. The Job descriptor consists of data-time (in
hierarchical order), Job type and PGE version. This is a property of the Job and can be captured within the JDF file. The
priority tag is Operator defined, though the Job Entry Subsystem suggests a default that is normaily used.

An example Job Id is: 5/20020418.1600_02.099.5020_Lila _AIRS 2.22.3.32. Here bi20020418.1600 is the priority tag,
and the rest is the Job descriptor. The Job descriptor starts with a hicrarchical encoding of the data time: 02 is the data
year, 099 is the day-of-year, and S020 denotes the standard granule number (1-240) of the first granule of the Job (AIRS
granule-level PGEs normally operate on 20 granules at a time). For AIRS quarter-day PGEs, "Sxxx" would be replaced
by "Qx", and for daily jobs "Sxxx" would be replaced by "D". Finally, Lla_ 4IRS is the PGE name and 2.22.3.32 the
PGE Version. .

The priority tag consists of a 2-character prefix encoding the Job priority-class, and a submission-time-tag (year-month-
day-hour-min). In the example, b/ is the priority-class denoting a "bascline” job. Different priority-classes would be used
to denote particular test-runs; these are normally capitalized to give the test Jobs higher priority than baseline Jobs.
Depending on the situation, the Operator can select the appropriate priority-class to give a set of Jobs any relative
priority with respect to other Jobs in the system.

The submission-time-tag is normally not unique to a particular Job, but to a large collection of Jobs. This is because Job
Entry Subsystem takes limited Operator input on the data-start and end-time and expands on these to create all the JDFs
necessary to fill a specified interval. It keeps these proto-JDFs in a buffer (actually a file directory) until the Operator has
created all Jobs to be submitted at once. The Operator then chooses a priority tag (or takes the default based on the
current time) and submits the Jobs. Only at this step do the JDFs get renamned and pushed to the Job Planner, all with the
same priority-tag. If additional Jobs entered later need to be prioritized within a set previously entered, these merely
have to be submitted with the same priority-tag as before (overriding the default current time).

In practice, this simple scheme works surprisingly well. Jobs are processed first according to priority-class; Jobs of the
same priority-class are processed in order of submission; Job with the same class and submission time are processed in
data-time order, regardless of PGE type. The result is there is smooth processing flow of all PGE lcvels. Also, the
adjustable priority-tag prefix allows easy changing or adjusting Job priorities.

1n

@o14

07/07/03

MO_N 14:03 FAX 1818 393 4918 AIRS PPOJECT

6.6. Off-line Tape Archive System Awkward, But Can be Workable

Because of limited capital resources, TDS data products are stored in a near-line tape archive jukebox, fronted by a raid
disk cache. This system is controlled by commercially available hierarchical file system (HFS) software that simulates a
UNIX file system that contains all the data files. Except for the several-minute time delay accessing a near-line file, the
HFS software manages this virtual file system transparently to the user. The TDS tape jukebox is configured to hold
approximately 680 DLT-7000 tapes, each with a data capacity of 35 gigaytes. As of this writing, the disk cache is 6 TB,
soon to be expanded to 11 TB.

When the TDS requirement were originally specified, it was naively thought that (1) old data was not of interest and
would routinely be deleted from the system, (2) the tape space hofding these old files could be reclaimed, and (3) the
TDS only had to work for the first year after launch [in fact developers were discouraged from thinking or planning how
the TDS would function beyond that]. The first assumption proved untrue; there is always a data user interested in
accessing old data. The second assumption, though technically true, was later deemed a high risk by the system
administrator. The third presumption also proved false, as the TDS is now expected to be useful throughout the mission.

After 5 months of post-launch operation, it became apparent that the tape archive was on track to fill before the end of
the first year. If this had happened, either no new data could be placed in the system (effectively shutting down the
TDS), or random tapes would have to be swapped out for new ones, leaving it up to chance when someone would try 1o
access a file that wasn't actually there. This situation would have been aggravated by the fact the HFS software isn't very
informative to the user when this happens.

In response to this challenge, we were forced to devise a systematic way to organize the data archival so that there would
be control on what data was removed from the system. The facility to map specific filename or directory matches to
specific tape~groups is provided by the HFS software, but is not recommended as a means to manage an off-line tape
archive system. There were however no obvious altematives.

First, files were categorized according to top-level collection: test or baseline. All test files were organized into one tape-
group per operational year. The baseline files were organized into 6 different overall classifications (Science, LO-Airs,
LO-Support, L1b-IR-Rad, 1.1a-V{R-Counts, L1-Support) based on file type. Each of these was then organized by data
month. Each month and classification formed a tape-group on which all matching files were placed. Each tape-group
could then be added or removed from the jukebox as a unit. Fortunately, this was easy to configure because the file
catalog's directories were organized by data month and file type.

The classifications were derived based on data-usage and collection size. Some data (e.g., LO) were of less interest to the
general user and nced not be in the system as long as other data types. Although there is a large user interest in L1b-JR
files, these are so large (29 gigabytes per day) that only a few months could be placed near-line at a time. However L1B
QA support files are much smaller and could be placed in a tape-group with a longer near-line residency.

To minimize human errors when removing or swapping tapes, the tape-group names and dates had to be encoded in the
tape Id's and tape labels. This new labeling was complex enough that purchasing custom labels would have been
prohibitively expensive. We had to purchase and try several tape-label printing packages before we found one that was
suitable.

The transition to rearchive all data from a single tape-group to this new collection of individually managed tape-groups
was quite painful, since by this time the system could not support both sets of tapes in the jukebox. Much overtime by
the systerm administrator was necessary to complete this. This process took several months, but was completed before the
system reached capacity.

Today, at 14 months post launch, there are 630 tapes near-line and 450 tapes off-line, with the off-line collection
growing at 80 tapes per month. A web page instructs the user which data sets are available in near-line tapes. Accepting
this inconvenience, the system runs smoothly, and should continue to do so for years to come.

@o1s

07/07/03 MON 14:04 FAX 1818 393 4918 AIRS PPOJECT

@oie

REFERENCES

Navid Dehghani, Evan M. Manning, and Quentin Sun, “AIRS Scicnce Processing System (ASPS): A Description of
Architecture and Capabilities, in Infrared Spaceborne Remote Sensing IX, Marija Strojnik, Bjorn F Andersen, Editors,
Proceedings of SPIE, Vol. 4486, pp. 104-110 (2002).

ACKNOWLEDGEMENT

The authors appreciate the efforts of the entire AIRS software development and test team at JPL including Robert Ando,
Amy Braverman, Luke Chen, Christopher Cordell, Solomon De Picciotto, Jose Donhauser, Eric Fetzer, Evan Fishbein,
Alex Foo, John Gieselman, Stephanie Granger, Mike Gunson, Mark Hofstadter, William Irion, Bjom Lambrigtsen,
Sung-Yung Lee, Vicky Myers, Quyen Nguyen, Robert Oliphant, Edward Olsen, Zi-Ping Sun, Vivian Tang, Yuan-Ti.
Ting. Additionally several members of the AIRS Science Team have supported our efforts. Finally, the authors
appreciate the efforts of Navid Dehghani and Quentin Sun, former members of the AIRS software development stat¥.
Sections 2-4 of this document were, in part, based on an earlier publication (sec reference) by Deghani, Manning and
Sun.

The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion
Laboratory, California Institute of Technology.

13

