
1

1

Advanced Methods in
Model-based Autonomy

2

Outline

• Introduction & Overview
• Model-based Programming
• Execution of Model-based Programs
• Fundamentals of Model-based Reasoning
• Modeling via State Analysis
• Advanced Methods

– Timed Model-based Programming
– Hybrid Model-based Programming
– Model-based Temporal Planning
– Integration of Activity Planning and Path Planning
– Verification of Model-based Programs

• Conclusion

2

3

Model-based Autonomy Heritage

General
Diagnostic

Engine

DeKleer &
Williams, 1987

Model-based Diagnosis

Sherlock

DeKleer &
Williams, 1989

Behavioral Modes Livingstone

Williams &
Nayak, 1996

Mode Reconfiguration

NMP Deep Space 1 Remote Agent

HMEMoriarty

Model Parameter Learning Hybrid Model Diagnosis & Learning

Williams, & Millar, 1998 Hofbaur & Williams,
2002 Burton

Williams &
Nayak, 1997

Model Compilation

Titan

Williams, Ingham,
Chung & Elliott, 2002

RMPL and Eng. Executive

Kirk

Kim, Williams &
Abramson, 2001

RMPL and Sys. Executive

L2

Kurien & Nayak, 2000

Approximate
Belief States

RMPL-ME

Mode Estimation of
Complex Behaviors

Williams & Gupta, 2001

Directions:

• Model-based
Programming &
Execution

• Hybrid discrete-
continuous systems

• Complex &
collaborative behaviors

4

Related Work

• State-based Specifications
– StateCharts (Harel, ‘87)
– Timed StateCharts (Kesten &

Pnueli, ‘92)

• Synchronous Programming
– Esterel (Berry & Gonthier, ‘92)
– Lustre (Halbwachs, ‘93)

• Constraint Programming
– TCC (Saraswat, Jagadeesan &

Gupta, ‘94)

• Robotic Execution
– RAPs (Firby, ‘89)
– ESL (Gat, ‘96)
– TDL (Simmons, ‘98)

• Timed Formal Modeling
– Timed Transition Systems

(Henzinger, Manna, & Pnueli, ‘92)
– Timed Automata (Alur & Dill, ‘94)

• Model-based Execution
– GDE, Sherlock (deKleer & Williams,

‘87-’89)
– Livingstone (Williams & Nayak, ‘96-

‘97)
– Livingstone2 (Kurien & Nayak, ‘00)

• Model-based Programming
– RBurton (Williams & Gupta, ‘99)
– Titan (Williams, Ingham, Chung &

Elliott, ‘03)

• Mission Data System
– MDS (Dvorak, Rasmussen, et al.,

‘00)

3

5

Timed Model-based
Execution Architecture

Plant
Commands

Configuration
goals

Observations

Control Sequencer

State
estimates

Timed
Plant

Model

Timed
Control
Program

Deductive Controller

Timed Model-based
Program

Timed Model-based
Executive

System
Clock

Mode
Estimation

Mode
Reconfigurationestimates

State

Clocks

Timers

6

Timed Hierarchical
Constraint Automata

nav=
inertial

t2 < 4 mins

lander=
separated

att=entry-orient

att=entry-orient

t2 >=
4 mins

att=
entry-
orient

MAINTAIN entry = initiated

t2=0

t1 < 270mins

t1 >=
270minst1=0engine=

standby

1

2 3 4 5 6 7

8

9 10

11 12

• Graphical specification language for control programs,
in spirit of Timed StateCharts

• Extend Hierarchical Constraint Automata to timed behavior

clock
initialization

clocks provide timing mechanism
conditioned on time & state constraints

Mars Entry control program

transitions conditioned
on clock variables

4

7

Timed Concurrent
Constraint Automata

• Variant of Factored POSMDP (state not directly observable,
next state depends on current state & time spent in state)

• Extend Concurrent Constraint Automata to timed behavior
Engine:

Off

Firing Standby

cmd = standby

cmd = fire

Failed

cmd =
off

Camera:

cmd = standby

(power = off) AND
(thrust = zero)

(power = on) AND
(thrust = zero) AND

(temp = nominal)

(power = on) AND
(thrust = full) AND
(temp = nominal)

Heating

(power = on) AND
(thrust = zero) AND
(temp = increasing)

cmd = off

tE>=30
& tE<=60

Inactive

Taking
Picture Idle

cmd = camOn

cmd = takePicture

Stuck Shutter

cmd = camOff

(power = off) AND
(shutter = closed)

(power = on) AND
(shutter = open)

tC>=0.1
& tC<=0.2

(power = on) AND
(shutter = closed)

(power = on) AND
(shutter = closed)

unconstraned

modal
constraints

nominal
modes

fault
modes modal rewards

guarded
probabilistic
transitions

Pτ = 99.9%

Pτ = 0.1%

pτ(t)

t0.1 0.2

8

Timed Mode Estimation

t0

Off Heat

t1

action:
cmd=stby

action:
none

Heat

t1+dt ...

Heat

action:
none

Heat

t1+30+2dtt1+30+dt

Stand
by

action:
none

Heat

t1+30+3dt

Stand
by

action:
cmd=off

Off

action:
none

tE := 0

0.99 0.99

Failed

Failed

Failed Failed Failed Failed

Failed Failed Failed Failed

Failed

Failed Failed Failed

Failed Failed

Failed

tE := 0

tE := 0

tE := 0

tE := 0

tE := 0

1

11

1 1 1

1 1 1 1

tE = dt

tE = 30 tE = 30+dt

tE = dt tE = 30+dt tE = 30+2dt

tE = 30+2dt

tE = 30+3dt

tE = 30+3dt

0.01

0.01

0.99(1-
PT(30+dt))

0.99
PT(30+dt)

Stand
by

0.01

0.99(1-
PT(30+2dt))

PT(30+2dt)

0.01

0.01

0.99

0.99

0.01

0.99

0.01

0.01
0.99

tE := 0

tE = 30+4dt

tE = 2dt

tE = dt

tE = dt

tE = dt tE = 30+dt tE = 30+2dt tE := 0

• For physical plants modeled as TCCA (POSMDP):

Good news:
can leverage existing
OPSAT engine!

Bad news:
state space gets
much larger…

5

9

Hybrid Modeling and Estimation

• Model the system as a network of Probabilistic Hybrid Automata
• Frame fault diagnosis as state estimation in this model

closed part.
open open

stuck
closed

stuck
open

0≤x

0>x 2.1>x

0≤x 2.1≤x

1.0

9.0

1.0

9.0

2.10 ≤< x
2.1>x

Flow Regulator

Discrete state (mode)

Continuous state: flow x

xq
qx

out

cmdk

=
+= −

+)10,0(4
1 N

0.8=outq

Innovative features:
• non-linear dynamics
• mode transitions dependent on

continuous state
• Detect failures or mode changes

from subtle symptoms

10

Hybrid Estimation

• Track a set of mode sequences with a bank of Kalman Filters

Partially
Open

Closed

Stuck
Closed

Partially
Open

Fully
Open

Closed

Partially
Open

Closed

Stuck
Closed

Closed

Stuck
Closed

6

11

Experimental Results:
K-best filtering

12

Control SequencerControl
Program

System
Model

Mode
Estimation

Mode
Reconfiguration

Model-based
Program

Model-based Executive

Hybrid Model-based Execution

Deductive Controller

Hybrid
Hierarchical
Constraint
Automata
(HHCA)

Concurrent
Probabilistic

Hybrid
Automata
(CPHA)

7

13

Planning
Model

System
Model

Model-based
Program

Model-based Temporal
Planning & Execution

Plan Runner

Mode
Estimation

Mode
Reconfiguration

Model-based Planner/Executive

Deductive Controller

Temporal Planner

14

Model-based Temporal Planning

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Temporal Planner
High-Level
Mission
Planning Model

goals

8

15

Model-based Temporal Planning

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Temporal Planner
High-Level
Mission
Planning

Reactive, Temporal Planner:

• Fast planning performed as graph search

• Encoding of non-deterministic choice

• Conditional planning via encoding of
pre/post conditions and maintenance
conditions.

goals

16

Model-based Temporal Planning

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Temporal Planner
High-Level
Mission
Planning

Input: Planning models specified as
RMPL models

Processing: Transforms RMPL models
into intermediate HCA representation, then
from HCA to Temporal Plan Network
(TPN) representation.

Output: Temporally-constrained network
of events

goals

9

17

Model-based Temporal Planning

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Temporal Planner
High-Level
Mission
Planning

goals

Code for describing:

• Concurrent Task Management
• Resource Management
• Temporal Constraints
• Multiple Method Selection

18

Model-based Temporal Planning

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Temporal Planner
High-Level
Mission
Planning

goals

RMPL Constructs:
• constraints
• conditional execution
• guarded transition
• full concurrency
• iteration
• non-deterministic choice
• activity timing

c
if c thennext A
unless c thennext A
A , B
always A
choose A, B, …
A within time [t-,t+]

10

19

Model-based Temporal Planning

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Temporal Planner
High-Level
Mission
Planning

TPN Representation

1. STN-like temporal representation of upper &
lower bounds between events

2. Choice encoded via choice nodes (i.e. only one
trajectory branches from it)

3. Conditions encoded via Ask(C) & Tell(C)

3

6

4 5
[405,486]

Ask(PATH1=OK)

7
Ask(PATH2=OK
)

8

[405,486]
Choice
Node

goals

20

Model-based Temporal Planning

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Temporal Planner
High-Level
Mission
Planning

goals

RMPL Planning Model can be compiled
into a Temporal Planning Network

1 2

3 4 5 6

7 8 9

10 11 12

13 14

15 16 17 18

11

21

Model-based Temporal Planning

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Deductive
Mode Estimator &
Reactive Planner

FSC

RTC

Onboard Sequencer

Model

Temporal Planner
High-Level
Mission
Planning

goals

Planner traces set of paths from start to end of TPN
that satisfy temporal & state constraints. Paths
correspond to temporally consistent execution threads.

1 2

3 4 5 6

7 8 9

10 11 12

13 14

Start End

15 16 17 18

22

Programming Teams in RMPL

(Group-Enroute() [l,u] (
(sequence

choose (
(do-watching (PATH1=OK)

((Group-Traverse-Path(PATH1_1,PATH1_2,PATH1_3,RE_POS))[l*90%,u*90%])
)
(do-watching (PATH2=OK)

((Group-Traverse-Path(PATH2_1,PATH2_2,PATH2_3,RE_POS))[l*90%,u*90%])
))

(parallel
((Group-Transmit(OPS,ARRIVED))[0,2])
(do-watching(PROCEED=SIGNALLED)

((Group-Wait(HOLD1,HOLD2))[0,u*10%]))
)))

RendezvousRendezvous Rescue AreaRescue Area

Corridor 2

Corridor 1

Enroute

RMPL Programs

• Describe concurrent sensing,
actuation and movements activities.

• Choose specifies redundant
strategies and contingencies.

• [A,B] Specifies timing constraints.

12

23

Integrated Activity & Path Planning
for Agile Teams

Integrated Activity Planning & Path Planning:
• Search a temporal plan network in best-first

order
• Dynamically compute collision-free paths for

those plan activities that require moving
between locations and the estimated cost of
flying along this path

• Continuously interleave activity and path
planning to pursue the most promising plan.

Collision-free path

Cost estimate = 10 units of fuel

Cost estimate = 20 units of fuel

Path Planning Method 1:
Explore state space using Rapidly-
exploring Random Trees (RRTs)

Maneuver Automaton: Describes
a set of agile maneuvers with
respect to the vehicle’s dynamics

RRT

Location A:
start state Location B:

goal state

Path Planning Method 2:
Clausal Linear Programming

24

Path Planning through Clausal LP

O1

O2

O3

O1 = L

O2 = B

O3 = A

A simple example: • Mathematically solving the problem of vehicle
control normally involves straightforward Linear
Programming

• But the addition of obstacle avoidance introduces
an Integer Programming element

• This makes the problem difficult to solve “online”:
fast enough for actual vehicles in motion

• To resolve this we transform obstacle and
collision avoidance into a Constraint
Satisfaction Problem: For each obstacle, the
domain is split into four regions (above, below,
left, right), one of which is selected

• Integrating the selection of domains with the
standard vehicle control leads to a an algorithm
that can be used as a Hybrid CSP/LP Solver

• si+1 = Asi + Bui State Evolution Equation
• sij ≤ wij, etc. State Space Constraints
• xi ≥ xmin ∨ xi ≤ xmax ∨ yi ≥ ymin ∨ yi ≤ ymax Obstacle Avoidance (for all time i)
• Similar equation for Collision Avoidance (for all pairs of vehicles)

13

25

Motivation:

• Want robust
autonomous systems.

• Extend traditional
scenario-based
testing to verification
and validation (V&V).

Goals:
• Verify RMPL model-based programs (control program + plant model)

against goal specification.
e.g., ((EngineA = Firing) OR (EngineB = Firing)) for OrbitInsert()

• Extract probabilistic information about program’s possible executions.

Verification of
Model-based Programs

Approach:

26

Up Next…

• Conclusion!

