
1

1

Fundamentals of
Model-based Reasoning

2

Outline

• Introduction & Overview
• Model-based Programming
• Execution of Model-based Programs
• Fundamentals of Model-based Reasoning

– Consistency-based diagnosis (GDE)
– Pre-compilation & Probing
– Livingstone/Titan
– Conflict-Directed A*

• Modeling via State Analysis
• Advanced Methods
• Conclusion

2

3

Model-based Diagnosis

• Discrepancy between predicted and observed behavior
indicates a fault.

• Structural discrepancy allows us to build fault candidates.
• Sort fault candidates in order of probability and perform

additional tests to reject high probability candidates.

Model

Predicted
Behavior

Artifact

Observed
Behavior

Behavioral
Discrepancy

Structural
Discrepancy

4

M1

M2

M3

A1

A2

A

B

C

D

E

F

G

X

Y

Z

Simple Circuit with
Multipliers & Adders

X, Y, and Z are not directly observable

3

5

M1

M2

M3

A1

A2

A

B

C

D

E

F

G

X

Y

Z

3

2

2

3

3
Constraints: X=A*C

Y=B*D
Z=C*E
F=X+Y
G=Y+Z

F=A*C+B*D

G=B*D+C*E

Predictions: X=6
Y=6
Z=6
F=12
G=12

Simple Circuit with
Multipliers & Adders

6

Components

• Language for modeling the components and their
structure (connections)

• Predictive inference engine (propagation)
• Diagnostic Engine
• Approach:

– Find a sorted set of fault candidates.
– Perform a sequence of tests that refine the fault candidate

set.
– Tests are expensive so select tests carefully.

4

7

M1

M2

M3

A1

A2

A

B

C

D

E

F

G

X

Y

Z

3

2

2

3

3

10

12

Candidates: [A1], [M1], [A2, M2], [M2, M3], …

Decreasing Probability

Test: X=6 Candidates: [A1], [A2, M2], [M2, M3], …
Test: Y=6 Candidates: [A1], …

Simple Circuit with
Multipliers & Adders

8

M1

M2

M3

A1

A2

A

B

C

D

E

F

G

X

Y

Z

3

2

2

3

3

10

12

Candidates: [A1], [M1], [A2, M2], [M2, M3], …

Decreasing Probability

Test: X=6 Candidates: [A1], [A2, M2], [M2, M3], …
Test: Y=4 Candidates: [A2, M2], [M2, M3], …
Test: Z=8 Candidates: [M2, M3], …

Simple Circuit with
Multipliers & Adders

5

9

Propagation

[A=3, {}] [B=2, {}] [C=2, {}] [D=3,{}] [E=3, {}]
[F=10, {}] [G=12, {}]
[F=12, {A1, M1, M2}]
[X=4, {A1,M2}{A1,A2,M3}

6, {M1}]
[Y=4, {A1,M1}

6, {M2}{A2,M3}]
[Z=8, {A1, A2, M1}

6, {M3}{A2,M2}]
[G=10, {A1,A2,M1,M3}

12, {A2,M2,M3}]

Two Conflicts

10

[]

[M1,M2,M3,A1,A2]

[M1,M2,M3,A1] [M1,M2,M3,A2] [M1,M2,A1,A2] …

[M1,M2,M3] [M1,M2,A1] [M1,M2,A2] [M1,M3,A1] …

[M1,M2] [M1,M3] [M1,A1] [M2,M3] [M1,A2] [M2,A1] …

[M1] [M2] [M3] [A1] [A2]

Nothing works

Everything
works

Possible Faulty Components

6

11

Kernel Diagnosis

F=12, {[A1], [M1], [M2]}

G=10, {[A1], [A2], [M1], [M3]}

Sub Diagnoses:

Kernel Diagnoses: [A1]

[M1]
[M2,A2]

[A1] [M1] [M2,A2] [M2,M3]

[M2,A1]
[M2,M3][M2,M1]

12

M1

M2

M3

A1

A2

A

B

C

D

E

F

G

X

Y

Z

3

2

2

3

3

10

12

Candidate Generation: [] (everything working)
<[A1], [M1], [M2]> (from conflict F=10)

<[A1], [M1], [M2, A2], [M2, M3]> (G=12)
Note: [M2, M1] and [M2,A1] not included because they are supersets

of [M1] and [A1].

Simple Circuit with
Multipliers & Adders

7

13

Notes on Incremental
Candidate Generation

• New measurements may increase or decrease the
number of minimal candidates.

• Once a candidate is eliminated it can never reappear.
• Eliminated minimal candidates are replaced by larger

candidates.
• If a component appears in every minimal candidate,

that component is necessarily faulted.

14

Scalability

• For large systems the number of candidates can
grow very large.

• We manage this using various techniques
including:
– Representing only the minimal candidates.
– Restricting candidate generation to only consider ‘n’

faults.

• Push the hard work back to compile time to
reduce runtime cost.

8

15

Pre-compilation Phase

Idea: Pre-compile Test Results
1. Solve diagnosis sub-problems at compile-time, by generalizing

GDE’s conflict recognition.
2. Create run-time rules mapping observations to sub-diagnoses.
3. Given observations, synthesize likely global diagnoses.

Features:
• Shifts an NP-hard problem to compile-time.
• Sub-diagnoses tend to be small.
• Avoids generating large set of unlikely global diagnoses.
• Viewing decomposed rules aids engineering analysis

16

Active Probing/Measurements

• Select measurements that maximize the elimination
of high probability candidates.

• Continue to select new measurements (tests) until all
high probability faults have been found or until no
more useful measurements can be taken.

• Objective: Find the correct candidate with the
minimum total test cost.
– The best next measurement is the one that minimizes the

expected entropy of candidate probabilities resulting from
the measurement.

De Kleer and Williams AIJ 1987 “Diagnosing Multiple Faults”

9

17

a b c d e

11.93e

.999.44.94d

.998.31.96c

.999.45.98b

111a

a=1,e=1a=1,e=0a=1

P=0.01

Example

18

Components with State

• So far we have considered stateless components.
– Actually our components have had two states:

1. Working (with constraints)
2. Faulted (no constraints)

• Many components have multiple working states in
addition to faulted state(s) for example:

– Valves, Switches, Sockets, etc.

• We need to:
– Represent the different working states along with their

corresponding constraints.
– Estimate what state our components are in given our

measurements (when the state is not directly/completely
observable).

10

19

Example: Propulsion Subsystem

Models:
• Solenoid Valve (V)

– Modes – {O, C, U}*
– O(V) ⇒ ((P1 = nom) ⇔ (P2 = nom)) ∧

((P1 = low) ⇔ (P2 = low))
– C(V) ⇒ (P2 = low)
– U(V) ⇒ ()

• Catalyst Bed (C)
– Modes – {G, B, U}*
– G(C) ⇒ ((P2 = nom) ⇔ (TH = on)) ∧

((P2 = low) ⇔ (TH = off))
– B(C) ⇒ (TH = off)
– U(C) ⇒ ()

• Pressure Transducer (T)
– Modes – {G, SH, SL, U}*
– G(T) ⇒ ((TP = nom) ⇔ (P1 = nom)) ∧

((TP = low) ⇔ (P1 = low))
– SH(T) ⇒ (P1 = nom)
– SL(T) ⇒ (P1 = low)
– U(T) ⇒ ()

Variables:
• Observed

– Pipe 1 Pressure (P1) – {nom, low}
– Engine Thrust (TH) – {on, off}

• Hidden
– Tank Pressure (TP)– {nom, low}
– Pipe 2 Pressure (P2) – {nom, low}

N2H4

GHe

P

S

Pressure
Transducer

Solenoid Valve

Catalyst Bed

Pipe 1

Pipe 2

Hydrazine
Thruster

Inertial Sensor

* All modes have an associated probability.

20

Pre-compile Possible Conflicts
(Dissents)

• Identify Dissents:
– Dissent maps observations to conflicting modes:
– (P1 = low) ∧ (T = on)

⇒ ¬ (G(T) ∧ O(V) ∧ G(C))

• Generate Partial Diagnosis Rules:
– Replace conflicts with sub-diagnoses:
– (P1 = low) ∧ (T = on)

⇒ (SH(T) ∨ SL(T) ∨ U(T) ∨
C(V) ∨ U(V) ∨ B(C) ∨ U(C))

• Compilation method:
– Identify dissents by generating Prime

Implicates containing only OBS and Modes.

Offline Compilation

System
Model

Dissent
Generator

Compiled
Model

Dissents
Partial

Diagnosis
Rule

Generator

Partial Diagnosis
Rules

Online
Conflict-directed

Search

Most Likely
Diagnosis

Observations

N2H4

GHe

P

S

Pressure
Transducer

Solenoid Valve

Catalyst Bed

Pipe 1

Pipe 2

Hydrazine
Thruster

Inertial Sensor

11

21

Find Likely Diagnoses On-line

• Monitors generate discrete data
– Value : Sensor Voltage = 23 V Sensor Voltage = nominal

• Monitors trigger Rules, … which produce sub-diagnoses

• (P1 = nom) ∧ (T = off) ⇒ SH(T) ∨ SL(T)
∨ U(T) ∨ C(V) ∨ U(V) ∨ B(C) ∨ U(C)

• (P1 = nom) ⇒ G(T) ∨ SH(T) ∨ U(T)

• (P1 = low) ⇒ G(T) ∨ SL(T) ∨ U(T)

• …

G(T) ∨ SH(T) ∨ U(T)P1 = nom

Online Conflict-directed Search

Rule
Trigger

Best-first
Kernel

Diagnosis
Generator

Conflicts Repair
Manager

Monitors Continuous
Observations

Most Likely
Diagnosis

Partial Diagnosis
Rules (Dissents)

Discrete
Observations

Offline
Compilation

22

Online Conflict-directed Search

Search for most likely Kernel Diagnoses
• Find most likely covering of sub-diagnoses
• Guide set covering by A*search

G(T)
SH(T)

U(T)

0.865 0.017 0.002

Online Conflict-directed Search

Rule
Trigger

Best-first
Kernel

Diagnosis
Generator

Conflicts Repair
Manager

Monitors Continuous
Observations

Most Likely
Diagnosis

Offline
Compilation

Partial Diagnosis
Rules (Dissents)

Discrete
Observations

12

23

Example: Propulsion Subsystem

N2H4

GHe

P

S

Pressure
Transducer

Solenoid Valve

Catalyst Bed

Pipe 1

Pipe 2

Hydrazine
Thruster

Inertial Sensor

• Observations
• P1 = low
• TH = on

24

N2H4

GHe

P

S

Pressure
Transducer

Solenoid Valve

Catalyst Bed

Pipe 1

Pipe 2

Hydrazine
Thruster

Inertial Sensor

U(C)G(C)
0.00090.865

• Triggered Partial Diagnoses
– G(C) ∨ U(C)
– O(V) ∨ U(V)
– G(T) ∨ SL(T) ∨ U(T)
– SH(T) ∨ SL(T) ∨ U(T) ∨ C(V) ∨ U(V) ∨ B(C) ∨ U(C)

• Observations
• P1 = low
• TH = on

• Most-likely Diagnosis

Example: Propulsion Subsystem

13

25

• Triggered Partial Diagnoses
– G(C) ∨ U(C)
– O(V) ∨ U(V)
– G(T) ∨ SL(T) ∨ U(T)
– SH(T) ∨ SL(T) ∨ U(T) ∨ C(V) ∨ U(V) ∨ B(C) ∨ U(C)

N2H4

GHe

P

S

Pressure
Transducer

Solenoid Valve

Catalyst Bed

Pipe 1

Pipe 2

Hydrazine
Thruster

Inertial Sensor

• Observations
• P1 = low
• TH = on

• Most-likely Diagnosis

U(C)G(C)
0.0009

0.0846
O(V) U(V)

0.0009

0.865

Example: Propulsion Subsystem

26

• Triggered Partial Diagnoses
– G(C) ∨ U(C)
– O(V) ∨ U(V)
– G(T) ∨ SL(T) ∨ U(T)
– SH(T) ∨ SL(T) ∨ U(T) ∨ C(V) ∨ U(V) ∨ B(C) ∨ U(C)

N2H4

GHe

P

S

Pressure
Transducer

Solenoid Valve

Catalyst Bed

Pipe 1

Pipe 2

Hydrazine
Thruster

Inertial Sensor

• Observations
• P1 = low
• T = on

• Most-likely Diagnosis

U(C)G(C)
0.0009

0.0846

O(V) U(V)

0.0009

0.865

0.0846

G(T) U(T)SL(T)

0.00020.0017

Example: Propulsion Subsystem

14

27

• Triggered Partial Diagnoses
– G(C) ∨ U(C)
– O(V) ∨ U(V)
– G(T) ∨ SL(T) ∨ U(T)
– SH(T) ∨ SL(T) ∨ U(T) ∨ C(V) ∨ U(V) ∨ B(C) ∨ U(C)

N2H4

GHe

P

S

Pressure
Transducer

Solenoid Valve

Catalyst Bed

Pipe 1

Pipe 2

Hydrazine
Thruster

Inertial Sensor

• Observations
• P1 = low
• T = on

• Most-likely Diagnosis

U(C)G(C)
0.0009

0.0846

O(V) U(V)

0.0009

0.865

U(S) U(V)C(V)SL(S) B(C) U(C)SH(S)

0.0846

G(T) U(T)SL(T)

0.00020.0017

Example: Propulsion Subsystem

28

• Triggered Partial Diagnoses
– G(C) ∨ U(C)
– O(V) ∨ U(V)
– G(T) ∨ SL(T) ∨ U(T)
– SH(T) ∨ SL(T) ∨ U(T) ∨ C(V) ∨ U(V) ∨ B(C) ∨ U(C)

N2H4

GHe

P

S

Pressure
Transducer

Solenoid Valve

Catalyst Bed

Pipe 1

Pipe 2

Hydrazine
Thruster

Inertial Sensor

• Observations
• P1 = low
• T = on

• Most-likely Diagnosis

• Full Diagnosis : SL(T) ^ O(V) ^ G(C)

U(C)G(C)
0.0009

0.0846

O(V) U(V)

0.0009

0.865

U(S) U(V)C(V)SL(S) B(C) U(C)SH(S)

0.0846

G(S) U(S)SL(S)

0.00020.0017

Example: Propulsion Subsystem

15

29

Conflict-directed, best-first,
deductive kernel

• Tasks & models compiled into propositional logic queries
• ITMS efficiently tracks state changes in truth assignments
• Conflicts dramatically focus search
• Careful enumeration grows agenda linearly

Generate
successor

Agenda Check Consistency
Optimal
feasible
solutions

Conflicts

Incorporate
conflicts

Checked
solutions

ITMS

Conflict
database

General
deduction
CAN achieve
reactive time
scales

30

When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth.

- Sherlock Holmes. The Sign of the Four.

1. Test Hypothesis
2. If inconsistent, learn reason for inconsistency

(a Conflict).
3. Use conflicts to leap over similarly infeasible options

to next best hypothesis Cd A* [Williams & Ragno, JDAM 05]
Livingstone [Williams & Nayak, AAAI 95]
Sherlock [de Kleer & Williams, IJCAI89]

DDB [Stallman & Sussman, 77]

Conflict-directed A*

16

31

Increasing
Cost

Feasible

Infeasible

A* Conflict-directed A*

32

C
onflict 3

Increasing
Cost

Feasible

Infeasible
Conflict 1

Infeasible
Conflict 2

Conflict-directed A*

17

33

Function Conflict-directed-A*(OCSP)
returns the leading minimal cost solutions.
Conflicts[OCSP] ← {}
OCSP ← Initialize-Best-Kernels(OCSP)
Solutions[OCSP] ← {}
loop do

decision-state ← Next-Best-State-Resolving-Conflicts(OCSP)
if no decision-state returned or
Terminate?(OCSP)
then return Solutions[OCSP]

if Consistent?(C[OCSP], decision-state)
then add decision-state to Solutions[OCSP]

new-conflicts ← Extract-Conflicts(CSP[OCSP], decision-state)
Conflicts[OCSP] ← Eliminate-Redundant-Conflicts (Conflicts[OCSP] ∪

new-conflicts)
end

Conflict-directed A*

34

Increasing
Cost

Infeasible

C
onflict 3

Conflict 2

Conflict 1

• Feasible subregions described by kernel assignments.
Approach: Use conflicts to search for kernel

assignment containing the best cost candidate.

Kernel 1

Kernel 2

Kernel 3
Feasible

Conflict-directed A*

18

35

Next-Best-State-Resolving-Conflicts

function Next-Best-State-Resolving-Conflicts(OCSP)
best-kernel ← Next-Best-Kernel(OCSP)
if best-kernel = failure

then return failure
else return Kernel-Best-State[problem](best-kernel)

end

function Kernel-Best-State(kernel)
unassigned ← all variables not assigned in kernel
return kernel ∪ {Best-Assignment(v) | v ∈ unassigned}

End

See [Williams & Ragno, JDAM 05]
to find multiple leading solutions

{M2=U}

{M1=G, M2=U, M3=G, A1=G, A2=G}

36

Candidate Lattice

Edge between two nodes that differ
by a single mode assignment

All nominal modes

Single faults
Double faults

19

37

Best First Search

Stcl(thr1) Stcl(thr2) Stcl(thr8)Ston(sw1) Ston(sw9) …… Nocom(rt1)

All okay

Ston(sw1)
Ston(sw9)

Stcl(thr1)
Stcl(thr2)

… Stcl(thr2)
Stcl(thr8)

Stcl(thr8)
Nocom(rt1)

…

…

Stcl(thr1) Stcl(thr2) Stcl(thr8)Ston(sw1) Ston(sw9) Nocom(rt1)

Ston(sw1)
Ston(sw9)

Stcl(thr1)
Stcl(thr2)

Stcl(thr2)
Stcl(thr8)

Stcl(thr8)
Nocom(rt1)

Ston(sw1)

All okay

Ston(sw9) Stcl(thr1) Stcl(thr2) Stcl(thr8) Nocom(rt1)

Ston(sw1)
Ston(sw9)

Stcl(thr1)
Stcl(thr2)

38

Conflict-Directed
Best First Search

Stcl(thr1) Stcl(thr2) Stcl(thr8)Ston(sw1) Ston(sw9) …… Nocom(rt1)

All okay

Ston(sw1)
Ston(sw9)

Stcl(thr1)
Stcl(thr2)

… Stcl(thr2)
Stcl(thr8)

Stcl(thr8)
Nocom(rt1)

…

…

Stcl(thr1) Stcl(thr2) Stcl(thr8)

Stcl(thr1)
Stcl(thr2)

Stcl(thr2)
Stcl(thr8)

Ston(sw1)

All okay

Ston(sw9) Stcl(thr1) Stcl(thr2) Stcl(thr8) Nocom(rt1)

Stcl(thr1)
Stcl(thr2)

Stcl(thr8)
Nocom(rt1)

Conflict: ¬ (ok(thr1) and ok(thr2) … and ok(thr8))

A conflict is an assignment to a subset of the variables
that is inconsistent with the model and observations.

20

39

Optimizing the Agenda

Stcl(thr1) Stcl(thr2) Stcl(thr8)Ston(sw1) Ston(sw9) …… Nocom(rt1)

All okay

Ston(sw1)
Ston(sw9)

Stcl(thr1)
Stcl(thr2)

… Stcl(thr2)
Stcl(thr8)

Stcl(thr8)
Nocom(rt1)

…

…

Stcl(thr1) Stcl(thr2) Stcl(thr8)

Stcl(thr1)
Stcl(thr2)

Stcl(thr2)
Stcl(thr8)

Ston(sw1)

All okay

Ston(sw9) Stcl(thr8) Nocom(rt1)

Stcl(thr1)
Stcl(thr2)

Stcl(thr8)
Nocom(rt1)

Conflict: ¬ (ok(thr1) and ok(thr2) … and ok(thr8))

Stcl(thr2)Stcl(thr1)

40

Frame Mode Estimation & Mode
Reconfiguration as OCSPs

OCSP= <X,DX, gX,Y,DY, C(X,Y)>
– Decision variables X with domain DX

– Utility function gX(X): DX → ℜ
– State variables Y with domain DY

– Constraint C(X,Y): DX x DY→ {True,False}

Find Leading arg max g(X)
X ∈ DX

s.t. ∃ Y ∈ DY s.t. C(X,Y) is True

gX() is a multi-attribute utility function that is preferentially
independent.

21

41

Mutual Preferential Independence

Assignment δ1 preferred over δ2 if g(δ1) < g(δ2)

For W ⊆ X, the preference between two
assignments to W is independent of the
assignment to the remaining variables, W – X.

Example: Diagnosis: g(X) = G(g1(x1), g2(x2), . . .)
gi(xi = modeij) = P(xi = modeij)
G(u1,u2) = u1 x u2

If M1 = G is more likely than M1 = U,
prefer {M1 = G, M2 = G, M3 = U, A1 = G, A2 = G}
to {M1 = U, M2 = G, M3 = U, A1 = G, A2 = G}

Summary

• Early model-based diagnosis systems, like GDE, used
consistency-based diagnosis to produce a set of
feasible candidate solutions.

• State-of-the-art model-based executives, like
Livingstone and Titan, leverage the Conflict-Directed
A* algorithm to produce solutions in best-first order:

– Probability-ordered for ME;
– Cost-ordered for MR (GI).

• Pre-compilation of the most computationally
expensive operations allows for improved online
reactivity.

22

Up Next…

• Introduction to State Analysis
– An overview of a Model-based Systems Engineering

Methodology that is compatible with Model-based
Programming

– A discussion of how Model-based Programming fits into the
project lifecycle

