
1

1

Model-based Autonomy

Michel Ingham
Jet Propulsion Laboratory

California Institute of Technology

Paul Robertson
Model-based Embedded Robotic Systems Group

MIT Computer Science and Artificial Intelligence Laboratory

Sunday, October 9th, 2005

2

Who are we?

• Dr. Michel Ingham (JPL)

• Dr. Paul Robertson (MIT)

• Acknowledgment: Prof. Brian Williams (MIT)

2

3

Who are you?

• How about briefly sharing:
– Your name
– Your affiliation
– What you do
– The reason for your interest in this topic

• This way, we can try to tailor some of the discussion
to your interests…

4

Logistics

• 8:00am to 11:50am
• 15 minute break around 9:50am
• Feel free to interrupt with questions at any time!

3

5

Outline

• Introduction & Overview
• Model-based Programming
• Execution of Model-based Programs
• Fundamentals of Model-based Reasoning
• Modeling via State Analysis
• Advanced Methods
• Conclusion

6

Outline

• Introduction & Overview
– Motivation
– Illustrative Scenario
– Model-based Autonomy Architecture

• Model-based Programming
• Execution of Model-based Programs
• Fundamentals of Model-based Reasoning
• Modeling via State Analysis
• Advanced Methods
• Conclusion

4

7

Introduction & Overview

8

Vast Networks of
Complex Embedded Systems

• We are creating vast networks
of embedded systems that
perform critical functions over
long periods of time, often in
harsh and uncertain
environments.

• These long-lived systems
achieve their increasingly
ambitious goals by coordinating
a complex network of devices.

• Spacecraft must achieve
robustness by managing a
complex set of subsystems,
over a range of possible
nominal and off-nominal
scenarios.

• Programming these systems is
becoming an increasingly
daunting task.

Rovers

Robotic Outposts

5

9

Vast Networks of
Complex Embedded Systems

Rovers

Robotic Outposts

Earth-orbiting Constellations

Interferometers

• We are creating vast networks
of embedded systems that
perform critical functions over
long periods of time, often in
harsh and uncertain
environments.

• These long-lived systems
achieve their increasingly
ambitious goals by coordinating
a complex network of devices.

• Spacecraft must achieve
robustness by managing a
complex set of subsystems,
over a range of possible
nominal and off-nominal
scenarios.

• Programming these systems is
becoming an increasingly
daunting task.

10

Vast Networks of
Complex Embedded Systems

Rovers

Robotic Outposts

Earth-orbiting Constellations

Interferometers

In-situ Propellant
Production

Life Support

• We are creating vast networks
of embedded systems that
perform critical functions over
long periods of time, often in
harsh and uncertain
environments.

• These long-lived systems
achieve their increasingly
ambitious goals by coordinating
a complex network of devices.

• Spacecraft must achieve
robustness by managing a
complex set of subsystems,
over a range of possible
nominal and off-nominal
scenarios.

• Programming these systems is
becoming an increasingly
daunting task.

6

11

Vast Networks of
Complex Embedded Systems

Rovers

Robotic Outposts

Earth-orbiting Constellations

Interferometers

In-situ Propellant
Production

Life Support

Sample Return Missions
Remote In-situ Explorers

• We are creating vast networks
of embedded systems that
perform critical functions over
long periods of time, often in
harsh and uncertain
environments.

• These long-lived systems
achieve their increasingly
ambitious goals by coordinating
a complex network of devices.

• Spacecraft must achieve
robustness by managing a
complex set of subsystems,
over a range of possible
nominal and off-nominal
scenarios.

• Programming these systems is
becoming an increasingly
daunting task.

12

Mission Sequencing: State of the Practice

• Time-tagged nominal command sequences

GS,SITURN,490UA,BOTH,96-355/03:42:00.000;

 CMD,7GYON, 490UA412A4A,BOTH, 96-355/03:47:00:000, ON;
 CMD,7MODE, 490UA412A4B,BOTH, 96-355/03:47:02:000, INT;
 CMD,6SVPM, 490UA412A6A,BOTH, 96-355/03:48:30:000, 2;
 CMD,7ALRT, 490UA412A4C,BOTH, 96-355/03:50:32:000, 6;
 CMD,7SAFE, 490UA412A4D,BOTH, 96-355/03:52:00:000, UNSTOW;
 CMD,6ASSAN, 490UA412A6B,BOTH, 96-355/03:56:08:000, GV,153,IMM,231,
 GV,153;
 CMD,7VECT, 490UA412A4E,BOTH, 96-355/03:56:10.000, 0,191.5,6.5,
 0.0,0.0,0.0,
 96-350/
 00:00:00.000,MVR;
 SEB,SCTEST, 490UA412A23A,BOTH, 96-355/03:56:12.000, SYS1,NPERR;
 CMD,7TURN, 490UA412A4F,BOTH, 96-355/03:56:14.000, 1,MVR;
 MISC,NOTE, 490UA412A99A,, 96-355/04:00:00.000, ,START OF TURN;,
 CMD,7STAR, 490UA412A406A4A,BOTH 96-355/04:00:02.000, 7,1701,
 278.813999,38.74;
 CMD,7STAR, 490UA412A406A4B,BOTH, 96-355/04:00:04.000, 8,350,120.455999,
 -39.8612;
 CMD,7STAR, 490UA412A406A4C,BOTH, 96-355/04:00:06.000, 9,875,114.162,
 5.341;
 CMD,7STAR, 490UA412A406A4D,BOTH, 96-355/04:00:08.000, 10,159,27.239,
 89.028999;
 CMD,7STAR, 490UA412A406A4E,BOTH, 96-355/04:00:10.000, 11,0,0.0,0.0;
 CMD,7STAR, 490UA412A406A4F,BOTH, 96-355/04:00:12.000, 21,0,0.0,0.0;

7

13

Mission Sequencing: State of the Practice

• Time-tagged nominal command sequences
• If absolutely necessary, conditional behavior via rule-

based monitors or hard-coded state machines

14

Mission Sequencing: State of the Practice

• Time-tagged nominal command sequences
• If absolutely necessary, conditional behavior via rule-

based monitors or hard-coded state machines
• Usual off-nominal behavior response is “safe mode”:

– costly ground ops
– lost science opportunities

• For critical mission sequences:
– Safing mechanism is disabled
– Hard-coded fault protection via

highly-specialized software modules:
• ad-hoc
• complex
• expensive to generate and test Launch & deployment

Planetary fly-by

Orbital insertion

Entry, descent & landing

8

15

Large collections of devices must work in concert to achieve goals
• Devices indirectly observed and controlled.
• Must manage large levels of redundancy.
• Need quick, robust response to anomalies throughout life.

The Complexity Challenge

Cassini Maps Titan

16

Isolating Hidden Failures Requires Reasoning
About Large Models: STS-93

Symptoms:
• Engine temp sensor high
• LOX level low
• GN&C detects low thrust
• H2 level possibly low

Problem: Liquid hydrogen leak

Effect:
• LH2 used to cool engine
• Engine runs hot
• Consumes more LOX

The Complexity Challenge

9

17

The Complexity Challenge

“Houston, we have a problem...”
• Quintuple fault occurs (three shorts,

tank-line and pressure jacket burst,
panel flies off).

• Ground assembles novel repair.
• Swigert & Lovell work on Apollo 13

emergency rig lithium hydroxide
unit.

• Mattingly works in ground simulator
to identify novel sequence handling
severe power limitations.

Autonomy software should embody the innovation
exemplified in Apollo 13 and other missions.

18

The Complexity Challenge

Programmers are overwhelmed
by the bookkeeping of reasoning
about unlikely hidden states.

Leading Diagnosis:
• Legs deployed during descent.
• Noise spike on leg sensors
latched by software monitors.
• Laser altimeter registers 40m.
• Begins polling leg monitors to
determine touch down.
• Latched noise spike read as
touchdown.
• Engine shutdown at ~40m.

Model-based Programming:
Creation of embedded & robotic
systems that manage interactions
automatically, by reasoning from
models of themselves and their
environment.

Mars Polar Lander

10

19

Terminology

• Model-based Programming languages elevate the task to storyboarding and
modeling.

– Engineers program their high-level intentions in terms of how they would like the state
of the world to evolve.

– Programmers describe the world (system + environment) using commonsense models
of normal and faulty behavior.

• Model-based Executives implement these intentions by reasoning on the fly.
– They continually hypothesize the likely states of the world, given what they observe.
– They continually plan and execute actions in order to achieve the programmer’s

intentions.

• Model-based Autonomy is the discipline of applying Model-based
Programming principles to the control of complex embedded systems.

– These systems achieve unprecedented robustness (“fault-awareness”) by leveraging
the capabilities of their Model-based Executives.

– They automate onboard sequence execution by tightly integrating goal-driven
commanding, fault detection, diagnosis and recovery.

20

Model-based Programs Reason about State

Embedded programs interact with
the system’s sensors/actuators:

• Read sensors

• Set actuators

Model-based programs interact with
the system’s (hidden) state directly:

• Read state

• Set state

Embedded Program

State
Plant

Obs Cntrl

Programmers must reason
through interactions between
state and sensors/actuators.

Model-based Executives automatically
reason through interactions between
states and sensors/actuators.

Model-based
Embedded Program

State
Plant

Estimated State
Model-based Executive

Obs Cntrl

11

21

Orbital Insertion Sequence:
State-based Specification

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burn

22

Orbital Insertion Sequence:
State-based Specification

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burn

Set both engines to “standby”:

A off
B off

EngineA EngineB

12

23

Orbital Insertion Sequence:
State-based Specification

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burn

Set both engines to “standby”:

EngineA EngineB

A standby
B standby

24

Orbital Insertion Sequence:
State-based Specification

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burn

Turn science camera “off” to avoid
contamination from engine plume:

Science Camera

on

13

25

Orbital Insertion Sequence:
State-based Specification

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burn

Turn science camera “off” to avoid
contamination from engine plume:

Science Camera
off

26

Orbital Insertion Sequence:
State-based Specification

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burnOnce both engines are in

“standby” and the camera is
“off”, fire the primary engine:

EngineA EngineB

A standby
B standby

14

27

Orbital Insertion Sequence:
State-based Specification

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burnOnce both engines are in

“standby” and the camera is
“off”, fire the primary engine:

EngineA EngineB
A firing
B standby

28

Orbital Insertion Sequence:
Off-Nominal States

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burnIf primary engine fails, fire

secondary engine instead:

EngineA EngineB

A standby
B standby

15

29

Orbital Insertion Sequence:
Off-Nominal States

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burnIf primary engine fails, fire

secondary engine instead:

EngineA EngineB

A failed
B standby

30

Orbital Insertion Sequence:
Off-Nominal States

primary and secondary
engines to standby

planetary approach
rotate to insertion orientation
and hold attitude

turn camera off

perform
insertion burnIf primary engine fails, fire

secondary engine instead:

EngineA EngineB

A failed
B firing

16

31

System Under Control

Command
Sequence

Typical Spacecraft
Execution Architecture

CommandsObservations

Sequence Execution,
Real-Time Behaviors,

& Fault Protection

32

System Under Control

Command
Sequence

Typical Spacecraft
Execution Architecture

CommandsObservations

Fault Protection
Fault ProtectionFault Protection

Real Time
Behaviors

Real Time
Behaviors

Real Time
Behaviors

Real Time
Behaviors

Fault ProtectionSequence
Execution

17

33

System Under Control

Command
Sequence

Typical Spacecraft
Execution Architecture

CommandsObservations

Fault Protection
Fault ProtectionFault Protection

Real Time
Behaviors

Real Time
Behaviors

Real Time
Behaviors

Real Time
Behaviors

Fault ProtectionSequence
Execution

Time-tagged sequences of low-
level commands and “macros” …

… with fault protection
software running in

parallel, ready to “take
over” from nominal

sequence execution when a
fault monitor is triggered.

… augmented with event-driven
behaviors when necessary…

… executed by a nominal
sequencing engine…

34

System Under Control

Command
Sequence

Limitations of the Typical Architecture

CommandsObservations

Fault Protection
Fault ProtectionFault Protection

Real Time
Behaviors

Real Time
Behaviors

Real Time
Behaviors

Real Time
Behaviors

Fault ProtectionSequence
Execution

Sequence designers’
intent is not explicit

in the sequence

Complex interactions between these elements make it
difficult and costly to validate flight software, and to

have confidence that it will work reliably and robustly.

Fault Protection is often considered an “add-on” capability,
adjunct to the nominal control system and developed late in

the project lifecycle, despite the fact that its design can
uncover problems with the nominal control design.

System requirements and
understanding of behavior are
not always directly traceable to

the flight software design.

The boundary between State
Determination and State

Control is sometimes blurred,
with no explicit representation

of “State” in the software.

18

35

System Under Control

Control
Specification

Desirable Architectural Features

CommandsObservations

Onboard
Executive

Simple state-based
control specifications

with explicit intent

Automated reasoning through
low-level plant interactions

Fault-awareness
(in-the-loop recoveries)

Models that are
writable/inspectable
by systems engineers

Separation of state
determination from control,

with an explicit notion of
state at the boundary

36

System Under Control

Model-based
Program

Model-based Programs and Executives
Provide These Features

CommandsObservations

Model-based
Executive

Simple state-based
control specifications

with explicit intent

Automated reasoning through
low-level plant interactions

Fault-awareness
(in-the-loop recoveries)

Models that are
writable/inspectable
by systems engineers

Separation of state
determination from control,

with an explicit notion of
state at the boundary

19

37

System Under Control

Model-based
Program

Model-based Program

Control
Program

System
Model

CommandsObservations

Model-based
Executive

38

System Under Control

Model-based
Program

Model-based Program

Control
Program

System
Model

CommandsObservations

Model-based
Executive

Systems engineers
think in terms of

state trajectories…

20

39

EngineA EngineB

Science Camera

EngineA EngineB

Science Camera

Control Program: Intent
Expressed as Desired State

OrbitInsert()::
(do-watching ((EngineA = Firing) OR (EngineB = Firing))

(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND (Camera = Off))
(EngineA = Firing)))

(when-donext ((EngineA = Failed) AND (EngineB = Standby) AND (Camera = Off))
(EngineB = Firing))))

Control Program specifies
state trajectories:
– fires one of two engines
– sets both engines to ‘standby’
– prior to firing engine, camera must be
turned off to avoid plume contamination
– in case of primary engine failure, fire
backup engine instead

40

System Under Control

Model-based
Program

Model-based Program

Control
Program

System
Model

CommandsObservations

Model-based
Executive

Engineers reason about
how to achieve state
trajectories using models
of system behavior.

21

41

System Model: Formal
Descriptions of State Behavior

EngineA EngineB

Science Camera

EngineA EngineB

Science Camera

StandbyStandby

Engine ModelEngine Model

OffOff

offoff--
cmdcmd standbystandby--

cmdcmd

0.010.01

(thrust = full) AND
(power_in = nominal) AND
(flow_in1 = nominal) AND

(flow_in2 = nominal)
FiringFiring

0.010.01
standbystandby--

cmdcmd
firefire--
cmdcmd

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

0.010.01

FailedFailed

OnOn

Camera ModelCamera Model

OffOff

turnoffturnoff--
cmdcmd

turnonturnon--
cmdcmd

(power_in = zero) AND
(shutter = closed)

(power_in = nominal) AND
(shutter = open)

0.010.01

0.010.01

ResettableResettable

resetreset--
cmdcmd

System Model describes behavior
of each component:
– nominal and off-nominal behavior
– qualitative constraints
– probabilistic transitions
– costs/rewards

One state machine per component,
operating concurrently

42

Model-based
Program

Model-based Autonomy Architecture

Model-based Executive

Control Sequencer

Deductive Controller

Control
Program

System
Model

Configuration goalsState estimates

CommandsObservations
System Under Control

22

43

Model-based
Program

Model-based Executive

Model-based Executive

Control Sequencer

Deductive Controller

Control
Program

System
Model

Configuration goalsState estimates

CommandsObservations
System Under Control

The Control Sequencer is responsible for
generating, in real time, the sequence of
configuration state goals prescribed in
the Control Program.

The Control Program
is compiled into an
executable form.

44

Model-based
Program

Model-based Executive

Model-based Executive

Control Sequencer

Deductive Controller

Control
Program

System
Model

Configuration goalsState estimates

CommandsObservations
System Under Control

The Deductive Controller is responsible for
estimating the most likely current state based
on observations from the system, and issuing
commands to achieve the configuration goals.

The System Model is
compiled into a form
suitable for reasoning.

23

45

Example: Model-based Executive

• States like (EngineA = Firing) are not necessarily
DIRECTLY observable or controllable

• When the Control Sequencer issues the configuration
goal (EngineA = Firing), the Deductive Controller…

Fuel tankFuel tankOxidizer tankOxidizer tank

46

Mode Estimation

Example: Model-based Executive

Mode Reconfiguration

Determines valves
on the backup engine
that will achieve thrust,
plans needed actions
and executes them. Mode Estimation

Deduces that a valve
failed - stuck closed

Mode Reconfiguration

Plans actions to
open six valves
and executes

them,
one at a time

Fuel tankFuel tankOxidizer tankOxidizer tank

Deduces that
thrust is off, and

the engine is healthy

24

47

Up Next…

• Introduction to Model-based Programming:
– Control Programs
– System Models

System Under Control

Model-based
Program

Control
Program

System
Model

CommandsObservations

Model-based
Executive

