Atmospheric-Induced Effects Observed on Deep Space Ka-band Carrier Signals

David D. Morabito
9th Ka-Band and Broadband Communications Conference
November 5, 2003
Lacco Ameno (Island of Ischia), Italy
Ka-band For Deep Space Missions

- Ka-band is planned to be a telecommunications link frequency for upcoming deep-space missions
 - Mars Reconnaissance Orbiter
 - Kepler
 - Mars Telesat Orbiter
 - Jupiter Icy Moons Orbiter
 - Solar Probe
- Previous Studies Have Been Conducted using Ka-band on Deep Space Missions
 - Mars Observer
 - Mars Global Surveyor
 - Deep Space 1
 - Cassini
- Recently Studies have been conducted using Cassini’s Ka-band carrier
Ka-band For Deep Space Missions

- Ka-band offers increased advantage over X-band as a telecommunications link frequency
 - In theory about 11 dB advantage
- However, atmospheric liquid and gaseous water (as well as reduced antenna efficiency) contribute to loss and fluctuations in Ka-band signals
 - In practice, expect about 6 to 8 dB advantage over X-band
- It becomes important to characterize and understand propagation effects at Ka-band
 - Have demonstrated about 5 dB advantage over X-band using Ka-band
- Such knowledge is useful for developing optimum telemetry return strategies using Ka-band
- Significant amount of work has been performed to understand these effects by the Earth orbiting satellite community
- Such atmospheric-induced effects on signal power include
 - Rain fades
 - Scintillation
 - Increased thermal noise
Recent Ka-band Deep Space Mission Activity

- Cassini Gravitational Wave Experiment (GWE) was conducted between December 6, 2002 and January 14, 2003
- Prime antenna equipped with Ka-band used for Cassini GWE is located in Goldstone, California
- Experiment was conducted during opposition when charged particle effects are expected to be minimal
- Experiment was conducted in late autumn and winter and at night; Goldstone desert climate expected to be cold and dry
 - Minimal atmospheric effects expected on Ka-band signal links
- A full complement of troposphere media calibration equipment was gathering data used to calibrate out atmospheric effects from GWE data.
 - Water Vapor Radiometers – co-aligned along signal path of BWG
 - Microwave Temperature Profilers
 - Meteorological Sensors
Signal Amplitude

- Amplitude (or SNR) extracted from open-loop and closed-loop receivers
- About 438 hours of Goldstone Ka-band signal amplitude (and phase) data were acquired during the 40 day campaign
- Very few passes revealed any signatures that could be attributed to weather
- 2002/349 – few periods of minor “fading” up to 5 dB
 - Correlated with cloudy weather and increased activity revealed by WVR data.
 - Probably due to mechanical response of system exacerbated by the weather
- 2002-363 – only example of “classic” rain fade
 - Reached a maximum value of 6 dB in SNR
 - Exceeded 1 dB over 2 hours in SNR
 - Exceeded 1 dB over 1 hour in attenuation
 - Signature of fade feature is in good agreement with fade reconstructed from combined thermal noise and attenuation contributions predicted from WVR data.
- 2002/365 – few fades
 - Used as example pass to evaluate scintillation
WVR 31.4 GHz Zenith Brightness Temperature

December 2002

January 2003
Cassini GWE 2002/363 WVR Brightness Temperatures Measured Along Signal Path
Cassini 2002/363 (December 29)
Signal Amplitude (Power)
Measured and Predicted

December 29, 2002 Ka-Band Data

Signal amplitude (power)

- Thermal Noise
- Attenuation
- Combined SNR Loss
- Signal Amplitude, dB

Attenuation Relative to Baseline Weather Model Predicted from WVR data
Cassini 2002/363 (December 29)
Signal SNR
Measured from DTT and Predicted from co-aligned WVR

![Signal SNR Graph]

- Thermal Noise
- Attenuation
- Combined SNR Loss
- \times Pc/No - 47.5 dB-Hz
Model

- **Parameters**
 - \(T_{\text{phys}} = 280 \text{ K} \)
 physical temperature of atmosphere (model)
 - \(\tau = 0.0365 \)
 atmosphere optical depth (model)
 - \(T_{\text{equip}} = 35 \text{K} \)
 contributions to Tsys of antenna and equipment at DSS-25 (model)
 - \(T_{\text{cos}} = 2 \text{ K} \)
 cosmic background at 32 GHz (model)
 - \(A = 1/\sin(\text{elev}) \)
 number of air masses at elevation angle

\[
\begin{align*}
T_{\text{sys-mod}} &= T_{\text{cos}} \cdot e^{-\tau A} + T_{\text{phys}} (1 - e^{-\tau A}) + T_{\text{equip}} \\
T_{\text{sys-wvr}} &= T_{\text{wvr}} + 0.3 + T_{\text{equip}} \\
T_{\text{atm-mod}} &= T_{\text{phys}} (1 - e^{-\tau A}) \\
T_{\text{atm-wvr}} &= T_{\text{wvr}} + 0.3 - T_{\text{cos}}
\end{align*}
\]

- **Attenuation**
 - \(\text{Att (dB)} = 10 \log (1 - T_{\text{atm}}/T_{\text{phys}}) \)
 - \(\text{dAtt} = 10 \log (1 - T_{\text{atm-wvr}}/T_{\text{phys}}) - 10 \log (1 - T_{\text{atm-mod}}/T_{\text{phys}}) \)

- **Thermal Noise**
 - \(\text{dTN} = 10 \log (T_{\text{sys-wvr}}/T_{\text{sys-mod}}) \)

- **Total SNR Degradation**
 - \(\text{dAtt + dTN} \)
Attenuation "Fade" Statistics

- Only Cassini GWE pass observed to have significant fading attributed to weather was 2002/363 (December 29, 2002)
- Other periods with significant attenuation predicted from WVR data fell outside Cassini GWE signal acquisition periods
- 1 dB attenuation exceeded in about 1 hour over 438 hours of acquired signal amplitude data
 - Fade exceeded 0.22% of time, includes January (438 hours)
 - Fade exceeded 0.37% of time for December only (273.5 hours)
- AWVR2 complete data set acquired during December 2002
 - A 1 dB fade would be exceeded 0.7% of the time
- Overall Goldstone WVR data base used for DSN 810-5 Document
 - December - 1 dB fade would be exceeded 0.45% of the time
 - January - 1 dB fade would be exceeded 0.53% of the time
Examples of SNR with Short-term Signal Variations

For these passes, these short period “fades” appear to be correlated with mechanical pointing control response to the weather.
Signal Amplitude: Scintillation

- Measured scintillation computed by taking a moving average using high pass filtering at a suitable cutoff frequency to remove long period trends.
- Samples were presumed to perform low pass filtering to remove very rapid fluctuations attributed to other noise sources.
- Even during periods of turbulent weather along signal path, effect of scintillation was relatively small.
- Level of scintillation appears to be minimal and lies below thermal noise level (0.12 dB) for most of the pass until effect can be detected at low elevation angles.
- **Amplitude scintillation does not dominate fluctuations in signal amplitude**
- Data from other spacecraft missions confirm this.
Signal Amplitude: Scintillation

2002/365 - Measured Noise on Pc/No

Features due to “fades”

2002/365 – Predicted Noise on Pc/No

Combined thermal noise and Otung Model.

Conclusion

- Troposphere Effects on Ka-band Carrier Signals were examined by analyzing data from “recently” conducted Cassini GWE
- Amplitude fades observed but were rare given Goldstone winter nighttime dry climatic conditions
- Scintillation was below detectable levels for most of the experiment and considered negligible
- Such data is useful to study effects on Ka-band signals for planning for deep space missions
- A more rigorous study of tropospheric effects on Ka-band signals will be conducted with upcoming MRO mission which has a full Ka-band link
 - Telemetry Experiments
 - Navigation Experiments
 - Propagation Experiments

- Acknowledgements – Cassini GWE data courtesy of John Armstrong and the Cassini Radio Science Team; I would also like to acknowledge Shervin Shambayati, Steve Slobin and Steve Keihm for providing WVR data and/or statistics used in this study, and J. Milligan provided DSN tracking logs.