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ABSTRACT 

We present an application of hidden Markov models (HMMs) to analysis of geode- 
tic time series in Southern California. Our model fitting method uses a regularized 
version of the deterministic annealing expectation-maximization algorithm to en- 
sure that model solutions are both robust and of high quality. Using the fitted 
models, we segment the daily displacement time series collected by 127 stations 
of the Southern California Integrated Geodetic Network (SCIGN) over a two year 
period. Segmentations of the series are based on statistical changes as identified 
by the trained HMMs. We look for correlations in state changes across multi- 
ple stations that indicate region-wide activity. We find that although in one case 
a strong seismic event was associated with a spike in station correlations, in all 
other cases in the study time period strong correlations were not associated with 
any seismic event. This indicates that the method was able to identify more subtle 
signals associated with aseismic events or long-range interactions between smaller 
events . 

INTRODUCTION 

In this work, we apply hidden Markov models (HMMs) to analysis of geodetic 
time series data. Hidden Markov models are a well known tool that have been 
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successfully applied to a number of problems. The HMM works by modeling 
the observations as being generated by a discrete sequence of underlying (hidden) 
states with Markovian properties. Changes in the statistics of the observation 
sequence are indicative of changes in the underlying state. Fitting a model to the 
observation data results in an estimate of the underlying state sequence, allowing 
classification of observations according to associated state, as well as an estimate 
of the model statistics. 

Hidden Markov models have been used most prominently in the fields of speech 
synthesis and recognition (continuous output HMMs), and protein matching and 
analysis (discrete output HMMs). In these domains the difficult non-linear opti- 
mization problem of fitting the model to the observation data has primarily been 
addressed by the addition of explicit and implicit constraints that act to reduce the 
number of free model parameters. These methods include restrictions on the form 
of the state-to-state transition probability matrix (Juang & Rabiner 1985, Farago 
& Lugosi 1989, McGuire, et al. 2000), restrictions on the form of the output dis- 
tributions (Ephraim, et al. 1989), and parameter tying (Bellegarda & Nahamoo 
1990, Young & Woodland 1994, Bocchieri & Mak 2001). These constraints are 
supported by extensive knowledge about the underlying system being modeled. 
For instance, in speech analysis, we know not only the rules of language that 
govern the ordering of sounds and words (Lee & Hon 1989, Lee 1990) but also 
the details of the actual physical process which generates sound waves (Juang & 
Rabiner 1991). 

However, jn the analysis of geodetic time series such constraints are not as readily 
available. To address this difficulty, we use an alternative optimization approach 
that uses deterministic annealing and statistics-based regularization. The usual 
approach to HMM optimization is to use the expectation-maximization (EM) al- 
gorithm. The EM algorithm has many good properties and works well in practice 
for many problems, but only guarantees convergence to a local maxima (the local 
maxima found is dependent on the initial conditions). When for a given problem 
the number of local maxima is large, repeated applications of the method can re- 
sult in very different results. The annealing portion of our method addresses this 
problem by guiding the solution towards strong local maxima that emerge first 
from the optimization surface as the problem is “cooled.” The regularization por- 
tion of our work acts in a complimentary fashion, by pushing the solution away 
from solutions with redundant states. The method can be demonstrated to work 
by empirically measuring the number of local maxima encountered for different 
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random initializations. A comparison with the standard EM algorithm reveals that 
the number of local maxima found is dramatically reduced with no loss in solution 
quality. 

We apply this method to time series of displacement measurements collected by 
the SCIGN (Southern California Integrated Geodetic Network) array of GPS sta- 
tions. By training an HMM on an individual time series, we can classify the dis- 
placement observations in the series according to the estimate of the underlying 
state. This allows us to objectively segment the series into different behavioral 
modes. By repeating this process for all stations in the network, we can get a 
picture of the overall activity in the region. In particular, we can detect regional 
events by looking for correlations between state changes at different stations at a 
given point in time. We present the results of this method used in a two year study 
of GPS measurements and compare it against the seismic record during that same 
period. 

HIDDEN MARKOV MODELS 

We begin with a short review of hidden Markov models (HMMs). A hidden 
Markov model is a statistical model for ordered data. The observed data is as- 
sumed to have been generated by a unobservable statistical process of a particular 
form. This process is such that each observation is coincident with the system 
being in a particular state. Furthermore it is a first order Markov process: the next 
state is dependent only the current state. The model is completely described by 
the initial state probabilities, the first order Markov chain state-to-state transition 
probabilities, and the probability distributions of observable outputs associated 
with each state. 

Notation 

Our notation is similar to that employed by Rabiner (Rabiner 1989) and is as fol- 
lows: a hidden Markov model X with N states is composed of a vector of initial 
state probabilities 7r = ( T I )  . , . ) n ~ ) ,  a matrix of state-to-state transition probabil- 
ities A = (a l l ,  . . . , ai j ,  . . . , a”), and the observable output probability distribu- 
tions B = (bl  , . . . , b ~ ) .  The observable outputs can be either discrete or continu- 
ous. In the discrete case, the output probability distributions are denoted by bi (m),  
where m is one of A4 discrete output symbols. In the continuous case, the output 



Partially observed Markov chain. 

Figure 3.1: A representation of the hidden Markov model, with hidden nodes in 
underlying system states q ,  and observable variables 0. 

probability distributions are denoted by bi(y7 Oil ,  . . . , B i j ,  . . . , O ~ M )  where y is the 
real-valued observable output (scalar or vector) and the 0,s are the parameters 
describing the output probability distribution. For the normal distribution we have 
bi(y, Xi). An observation sequence 0 of length T is denoted 0 1 0 2  . 0~ and 
a state sequence Q of the model is denoted qlq2 . qT. 

Model optimization problem 

In this Section we concentrate on maximizing the likelihood of the observation 
sequence given the model, P(OIA); this is the maximum likelihood objective 
function. However, many other objective functions have been proposed for hid- 
den Markov models, including the state-optimized joint likelihood for the obser- 
vations and underlying state sequence (Juang & Rabiner 1990), maximum mu- 
tual information (MMI), (Bahl, et al. 1986) minimum discrimination information 
(MDI) (Ephraim et al. 1989), and maximum classification error (MCE) (Chou, 
et al. 1994). Of these, all but the first require labeled training examples on which 
to train the models, making them inappropriate for our target application domain. 
The first, used as the basis for the so-called “segmental K-means” algorithm, suf- 
fers from similar initialization-dependent local maxima issues as does the more 
common maximum likelihood criteria, and so we skip an independent analysis of 
it in this work. 

For the series of observations 0 = 0 1 0 2  - . e OT, we consider the possible model 
state sequences Q = q1q2 . - qT to which this series of observations could be 
assigned. For a given fixed state sequence &, the probability of the observation 
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sequence 0 is given by 

T 

P(OIQ, A) = n P(Otlqt, A). 
t=l  

Assuming statistical independence of observations, 

P(OIQ, A) = bq, ( 0 1 ) b q 2 ( 0 2 )  * - bqT(@).  

The probability of the given state sequence Q is 

(3.1) 

(3.2) 

P(QIA> = T q i a q i m a q 2 q 3  * * aqT-iqT- (3.3) 

The joint probability of 0 and Q is the product of the above, so that 

and the probability of 0 given the model is obtained by summing this joint prob- 
ability over all possible state sequences Q: 

P(OlN = ~ q l ~ q l ( ~ l ) ~ q l q 2 ~ ~ 2 ( 0 2 )  * % T - l q T ~ q T ( O T ) .  (3.5) 
all Q = Q ~ ~ ~ - G J T  

We can pose the optimization of P(OIA) as a non-convex optimization problem, 
often presented in terms of the equivalent problem of maximizing the log like- 
Eihood log P(0IA). The most common method for solving this problem is the 
expectation-maximization (EM) algorithm (Dempster, et al. 1977), although al- 
ternative approaches exist, such as those employing genetic algorithms (Kwong, 
et al. 2001) recursive predictive error techniques (Collings, et al. 1994), or gradi- 
ent projection (Huo & Chan 1993). 

EXPECTATION-MAXIMIZATION 

We can pose the EM algorithm generally as follows: we wish to maximize a 
likelihood P(A) where A is a set of model parameters. Given p(x, A), a positive 
real-valued function on x x A measurable in x for fixed A with measure p, we 
define 

P(A> = E[p(z, A>lAl  = (4.1) 
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and 
&(A, A') = E[logp(z, A')lAl = 1 P ( X ,  A) logp(z, A ' ) d ~ ( z ) ,  (4.2) 

where A' is also a set of model parameters on A. Here x is the so-called hidden 
variable, while p(x, A) is often referred to as the complete datu likelihood. The 
function Q is often referred to as the Q-function. Note that the function p may be 
a function of observable outputs y as well as the parameters of the model A, so we 
have p ( z ,  y, A). In this case, the integrals are over X + Y ( X ) .  

X 

Assume Q(X,X) 2 Q(A, A) for some set of model parameters 5. Then P(5) 2 
P( A). Proof 

1 .  Start with IC = 0 and pick a starting A('). 

2. Calculate Q ( A ( k ) 7  A) (expectation step). 

3. Maximize &(A('), A) over A (maximization step). This gives us the trans- 
formation F. 

4. Set = F(A(k)). If Q(A("l), A) - Q(A@), A) is below some threshold, 
stop. Otherwise, go to step 2. 

Note that this method is inherently sensitive to the initial conditions A(o), and only 
guarantees eventual convergence to a local maxima of the objective function, not 
the global maximum. Nevertheless, it is widely used in practice and often achieves 
good results. 
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For the hidden Markov model, we have the complete data likelihood 

(4.3) 

with P(A) = ELp(q, 0, A)lA] defined as in (3.5). The forward-backward method 
suggested by Baum and colleagues (Baum 1972, Baum & Egon 1967, Baum & 
Petrie 1966, Baum, et al. 1970, Baum & Sell 1968) can be used to efficiently 
calculate each step in the EM algorithm. 

DETERMINISTIC ANNEALING 

Deterministic annealing is a technique based on the principles of statistical me- 
chanics that can be used to modify the EM method to mitigate its inherent sen- 
sitivity to initial conditions. Deterministic annealing uses the principle of maxi- 
mum entropy to specify an alternative posterior probability density for the hidden 
variables; this allows us to define a new effective cost function depending on the 
temperature that is analogous to the thermodynamic free energy. Maximization 
of the likelihood at a given temperature is achieved via minimization of this cost 
function. Deterministic annealing differs from simulated annealing (Kirkpatrick, 
et al. 1983), in which a stochastic search is performed on the energy surface, in 
that the cost function is deterministically optimized at each temperature. 

Use of deterministic annealing has been proposed for vector quantization (Rose, 
et al. 1992) and for clustering problems (Buhmann & Kuhnel 1993, Wong 1993). 
Yuille and colleagues (Yuille, et al. 1994) showed that the EM algorithm can be 
used in conjunction with deterministic annealing. Recently the deterministic an- 
nealing technique has been applied to a variety of problems (Rose 1998). The 
particular framework we present here was first applied by Ueda and Nakano to 
mixture density estimation problems (Ueda & Nakano 1994) and then extended 
to the general case (Ueda & Nakano 1998), and involves a reformulation of the 
EM algorithm so that it incorporates deterministic annealing. 

How does the annealing process help in avoidance of local maxima? In effect, 
the method involves optimizing over a series of smoothed approximations to the 
original objective function. By slowly increasing the computational temperature 
parameter y, the effect of each observation is gradually localized. At y = 1, the 
parameterized Q-function is equivalent to the original Q-function for the problem. 
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We start the algorithm at a ~~i~ such that the modified objective function has 
a single maximum in A. We thereafter assume that at each new y, the global 
maximum of the new objective function is close to that of the previous, so that the 
method tracks the global maximum as y increases. In cases where this assumption 
does not hold true, the method will fail to track the global optimum. 

Our application of the deterministic annealing method to HMM optimization was 
is similar to that presented by Rose and Rao (Rose & Rao 2001) but differs from 
it in some important respects. First, it is not a supervised training method, and 
optimizes the likelihood rather than the minimum classification error. Second, 
it employs EM rather than gradient descent at each temperature. Our method is 
described in full in (Granat & Donnellan 2001) but can be summarized as follows: 
on the lcth iteration at each temperature we optimize over the function 

N N N T-I 

i=l 

+ E cr,'t:'(y) logbi(0,). (5.1) 
i=l t=l 

REGULARIZATION 

As was observed by (Whiley & Titterington 2002), many local maxima of the 
deterministic annealing EM method are located where the states are underutilized, 
in other words where bi = bj . Our approach is design regularization terms that act 
to push the optimization procedure away from these parts of the parameter space. 

In general when applying regularization terms it is convenient to work directly 
with the so-called Q-function for the HMM which is maximized during each EM 
iteration: 

N N N T-1 N T  

i=l i=l j = 1  t=l i=l t=l 

(6.1) 
Since this is separable in 7r,  A, and B, we can divide this into the sum of three 
functions, Q1 ( T ) ,  Qz (A) ,  and Q3 (B) which can be individually maximized. Since 
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we are interested in the output distributions we concentrate our attention on the 
last of these. 

No general regularization term exists to assist in avoiding the condition where 
bi = bj.  However, for particular forms of the output distribution regularization 
terms can be devised. For example, for Gaussian output distributions, we can add 
a regularization term based on the squared Euclidean distance: 

T -1 Q ; = C C r / ~ ) ( l o g n -  2logdet(Ci)--(mi-pi) 1 1 Ci ( m i - p i )  AT T 

2 
i=l t=l 

j=1 

To find the means and covariances we solve the simultaneous equations 

(6.3) 

We note that for sufficiently large values of wQ3 equation 6.2 is no longer concave 
in the means and covariances, thereby invalidating the M-step of the EM algo- 
rithm. To address this, we require that W Q ~  5 llC;'[1/2N at each iteration; this 
guarantees concavity of the modified &-function. 

SINGLE STATION RESULTS 

In this Section, we present some results of using the combined deterministic an- 
nealing and regularization techniques to train hidden Markov models on a GPS 
time series collected by a station in Claremont, California. 

This data set, which we designate clar, consists of relative displacement mea- 
surements in three dimensions (north-south, east-west, and vertical) collected 
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Figure 7.1: The data set clar, collected by a SCIGN GPS station in Claremont, Cali- 
fornia. 

daily over about two years spanning 1998- 1999. We choose this particular data set 
because it contains certain clear signals of deformation processes which have been 
identified by scientists, thereby providing some measure of ground truth against 
which we can evaluate models fit to this data. The figure 7.1 shows this data set; 
note the slow, recovering displacement around days 100-200 and the sudden east- 
west jump on day 626. The former is the result of ground water pumping and 
subsequent refilling of a local aquifer, the latter is an effect of the 1999 Hector 
Mine earthquake (magnitude 7.1). 

Our regularization scheme was based on the squared Euclidean distance as de- 
scribed in the preceding Section. Instead of choosing a particular set value for 
W Q ~  we set the value to the upper bound throughout the optimization procedure. 
That is, at each iteration W Q ~  = mini I ICi111/2N. We note that because of this 
recalculation of the regularization weight, our procedure is in fact not a true EM 
optimization method. However, our implementation does require that the log like- 
lihood function decrease at every iteration and so our procedure satisfies the re- 
quirements of a generalized expectation-maximization (GEM) method, guaran- 
teeing convergence to a local maxima. 

To evaluate the effectiveness of our method in avoid local maxima, we need to 
develop a metric for determining model solution distance. Our approach is to use 
the Hamming distance between the individually most likely state assignments for 
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the observation sequence (Le., the classification results): 

qt = argmax(.rit), t = 1,.  . . ,T 
l<i<N 

(7.1) 

where .rit is an estimate of the probability of being in state i at time t ,  given 
the observation sequence and the model. We use a linear assignment method 
based on bipartite graph matching (Ford & Fulkerson 1956) to resolve equivalent 
state permutations. Using this metric, we consider solutions with distance greater 
than zero to be different maxima. This means that models that produce identical 
classification sequences are considered to be the same local maxima, even if the 
model parameters are not identical. To determine the number of maxima found by 
an algorithm when applied to a particular data set, we can run repeated trials with 
uniform random initializations of the model parameters and count the number of 
different solutions based on this criterion. While this method does not guarantee 
identification of all local maxima, we can have confidence in the results if after 
some number of tests the number of identified local maxima fails to increase. 

In figure 7.2 we present results of the method as applied to the data set clar. We 
note that the combined method has fewer local maxima than both the standard EM 
approach and the deterministic annealing alone for all three annealing schedules. 
In fact, we observe that there is only a single solution for the combined method at 
the slowest annealing schedule for N = 1, . . . , 6  and only two solutions for N = 
7. However, after this point there is an abrupt rise in the number of experimentally 
determined local maxima. We propose that this rise is due to the fact that we have 
exceeded the true number of classes in the data set: since the combined method 
acts to reduce the number of redundant maxima, if we exceed the true number of 
maxima in the data set, then we expect radically worse results as the method forces 
the existence of additional, distinct classes. Figure 7.3 displays a classification 
result of the combined method for N = 7. We see that the method has identified 
all the major modes of the system including not only the before and after Hector 
Mine earthquake states and the water pumping signal but also a number of more 
subtle signals. 

MULTIPLE STATION RESULTS 

In the preceding Section we presented results of our method applied to a single 
SCIGN GPS station in Claremont, California. Here we are interested in detecting 
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Figure 7.2: Left: Number of experimentally determined local maxima for HMMs with 
varying numbers of hidden states applied to the data set clar. Right: Maximum log like- 
lihood among all experiments for HMMs with varying numbers of hidden states applied 
to the data set clar. Blue squares show results for the baseline HMM with standard EM 
optimization; magenta circles results with schedule Ap = 0.01; red triangles results with 
schedule Ap = 0.001. Dashed lines are the results with deterministic annealing only, 
solid lines are the results of the combined annealing and regularization technique. 

geophysical events with geographically disperse signatures and therefor wish to 
use the entire network. As background to our study we note that while earthquake 
events are of course of considerable interest, recently the geophysics community 
has become interested in aseismic events linked to crustal block motion or stress 
transfer between earthquake faults. These types of events have been observed in a 
few instances (Melbourne & Webb 2003, Rogers & Dragert 2003, Melbourne & 
Webb 2002, Melbourne, et al. 2002, Miller, et al. 2002, Hirose, et al. 1999, Heki, 
et al. 1997), but detections remain rare due to the subtlety of the signals. We hope 
to observe evidence of not only seismic but also aseismic events in the SCIGN 
data. 

To do this, we extract GPS signals from all 127 available stations in a 820 day 
window. When GPS displacement values for a given station are not available on 
a particular day due to signal dropout or incomplete installation, we assume a 
zero displacement measurement for that day at that station. We note that since 
actual measurements are almost never of zero displacement, this in effect adds an 
additional “dropout” class to the data. Our next step is to train N-state hidden 
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Figure 7.3: Classification results for a seven-state HMM applied to the data set clar. 

Markov models on each of these GPS signals. Since the GPS signals have similar 
statistics to one another, we can use the results of our experiments on the data set 
clar to estimate the model size. We see that there was a single local maxima 
for N < 7 and two local maxima for N = 7, rising rapidly after that. So we 
can guess that a good number of states to use would be in the range of 5-7, with 
an additional state added to account for the dropout class. Once all models of 
a particular size have been trained on each of the GPS time series, we can use 
the models to perform state assignments of each observation. We suspect that 
interesting geophysical events will manifest themselves as changes in the signals 
across multiple GPS stations, so we look for correlations in state changes across 
the network. 

Figure 8.1 shows the number of coincident state changes across all observation 
days with training done with six-state models. We see that there are a number 
of strong peaks indicating correlated state changes. Of note is the strong peak 
on day 652, which corresponds to the Hector Mine earthquake visible as an E-W 
displacement jump in the c l a r  data. We also observe that there is an increas- 
ing trend in the average number of coincident state transitions; this is because of 
the increasing number of stations coming on line during the observation period. 
In figure 8.2 we compare the results of using the baseline EM algorithm (blue) 
for training the HMMs used in this study against the results of using the regular- 
ized deterministic annealing EM training (red). We see that the noise level in the 
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Figure 8.1 : Coincident state changes for six-state HMMs trained on signals from each of 
127 SCIGN GPS stations. 

coincident state transition signal is significantly reduced by employing the latter 
method. We compare the coincident state changes against the earthquake record 
during the same time period in figure 8.3. We see that correlations across the GPS 
network (blue) are only strongly correlated with an earthquake event (red) in the 
case of the aforementioned Hector Mine earthquake. There are no other strong 
earthquakes in the time window studied. The implication of this is that the re- 
gional activity indicated by the state transition correlations is either an aseismic 
effect or the result of subtle long-range interactions between small (magnitude 
<= 4.0) events. 

CONCLUSIONS 

We have presented a method that uses deterministic annealing and regulariza- 
tion to modify the standard expectation-maximization (EM) method for fitting 
hidden Markov models (HMMs). We show that for typical geodetic time series 
the method greatly improves the robustness of the solution, as measured by the 
propensity to converge to different local maxima given random initial conditions, 
while still preserving solution quality as indicated by the solution log likelihood 
measure and by comparison with ground truth as identified by domain experts. 
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Figure 8.2: Coincident state changes for six-state HMMs trained using standard EM 
(blue) and regularized deterministic annealing EM (red) on signals from each of 127 
SCIGN GPS stations. 

Application of this method to training HMMs on displacement time series data 
collected by the Southern California Integrated Geodetic Network (SCIGN) en- 
abled the reliable statistical segmentation of 127 of those time series over approx- 
imately a two year span. Comparing the timing of state changes across all of the 
stations, it was found that large correlations between multiple stations were found 
at particular points in time. In only one case, that of the Hector Mine earthquake, 
were these correlations found to be connected with a seismic event. The implica- 
tion, therefore, is that these correlations are indicative of aseismic activity or of 
more subtle interactions between smaller scale events. 

Further study will involve extending the analysis to longer time series and in- 
clusion of data collected by all of the more than 250 SCIGN GPS stations. In 
addition, correlation spikes will be analyzed in more detail to determine if the 
correlated stations can be associated with any particular crustal block motion or 
particular fault interactions. Extensions of the method include use of techniques 
such as generalized conjugate-gradient acceleration (Jamshidian & Jennrich 1993) 
to speed up solution convergence, particularly in flat portions of the objective 
function, as well as combination with Kalman filter type approaches to estimate 
continuous state trajectory dynamics. 
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Figure 8.3: Comparison of coincident state changes for six-state HMMs trained using 
the regularized deterministic annealing EM (blue) and the Southem California earthquake 
record (red). Earthquake magnitudes, exaggerated by a factor of 10 for visibility, are 
presented on the vertical axis. 
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