
MISR Toolkit Users Guide

1) Introduction

1. Purpose

The purpose of the MISR Toolkit is to provide a simplified program interface to
access MISR L1B2, L2 and some ancillary data products. These products are
available in two forms: standard and conventional. The standard MISR
products are in a HDF-EOS2 grid file format, but with an added “stacked-
block” dimension. This block paradigm can make standard MISR products
difficult to read. To fix this problem a conventional MISR product was created
to adhere to the HDF-EOS2 grid file format standard and remove the block
paradigm. The conventional MISR products are also in a HDF-EOS2 grid file
format and better follow the HDF-EOS2 conventions without the “stacked-
block” dimension.

Either product form still requires a fair amount of work to access MISR data
when using HDF-EOS2 natively, such as block stitching, unpacking and
unscaling of data and science parameters. The MISR Toolkit makes accessing
MISR data of either form easy. It has the ability 1) to specify regions to read
based on geographic location and extent or the more traditional path and
block range; 2) to map between path, orbit, block, time range and geographic
location; 3) to automatically stitch, unpack and unscale MISR data; 4) to
perform coordinate conversions between lat/lon, SOM x/y, block/line/sample
and line/sample of a data plane. This means geolocation can be computed
instantly without referring to an ancillary data set lookup using a few MISR
toolkit function calls.

This document only describes the C interface which provides the fundamental
functionality. Other languages will be support and described in other
documents. Eventually map reprojections can be supported as described in the
concept diagram below.

2. Concept Diagrams

3. Terminology

1. Product

A product is any MISR ancillary, L1B2 or L2 file that is of the HDF-
EOS2 grid file format that stores MISR imagery or science retrievals.
There are two forms: standard and conventional. Standard MISR
product files are generated at the DAAC using standard production
software. Conventional MISR product files can be requested when
ordering MISR data and are converted upon delivery. The MISR
Toolkit can read both forms.

2. File

A file is synonymous with a product. MISR data is stored in files with
a hdf extension. A file name is used to tell the toolkit what product to
operate on. A file contains one or more grids.

3. Grid

A grid is an HDF-EOS2 concept which describes geolocated data. It
contains a set of projection equations (or references to them) along
with their relevant parameters. Together, these relatively few pieces
of information define the location of all points in the grid. The
equations and parameters can then be used to compute the latitude
and longitude for any point in the grid. A grid describes only one map
projection, but many grids of different map projections may exist in a
file. MISR, however, has one map projection and that is the Space
Oblique Mercator. A grid contains one or more fields.

4. Field

Fields in a grid data set are rectilinear arrays of two or more
dimensions. Most commonly, they are simply two dimensional
rectangular arrays. Generally, each field contains data of similar
scientific nature which must share the same data type. The data
fields are related to each other by common geolocation. That is, a
single set of geolocation information is used for all data fields within
one grid data set.

5. Path

A path is single pass of the spacecraft from approximately the North
Polar region to South Polar region. The spacecraft does not actually
go over the poles. There are 233 fixed and numbered paths, that
repeat every 16 days. In other words, path 32 always goes over Los
Angeles.

6. Orbit

An orbit is a sequence number of revolutions around the planet since
launch. Orbit number continually increase where has path repeats.
Therefore each path maps to several orbits. Also, orbit implies time
because orbit increases with time. In other words, path 32 over Los
Angeles would contain many orbits at different times since launch.
The MISR Toolkit provides functions to map between path, orbit and
time.

7. Block

Each path is divided into 180 fixed blocks. This is what constitutes
the “stacked-block” concept of the standard MISR product. Block 1
is actually on the spacecraft ascending side of the North Pole
(sometimes referred to as night side) and extends almost over the
pole and down the descending side of the path. As the South pole is
approached on the descending side the path goes back up the
ascending side where block 180 ends the path. There is only
approximately 140 blocks of daylight data in a path. The 180 block
format is to allow for seasonal variation or summer and winter
solstices.

8. Line

Each block or data plane (any image for that matter) contains one or
more lines of data divided up into samples. With respect to a 2-
dimensional array a row would be the same as a line.

9. Sample

Each line is divided into samples on that line. With respect to a 2-
dimensional array a column would be the same as a sample. The
MISR Toolkit provides functions to map between line and sample and
geographic latitude/longitude, Space Oblique Mercator X/Y and even
MISR specific block/line/sample.

10.Region

A region is a MISR Toolkit specific concept and not a MISR product
concept. In order to read MISR data using the Toolkit you must
define a region of interest. There are several ways to define a region
using: 1) path and block range; 2) upper left and lower right
geographic corners; 3) center geographic latitude/longitude and an
extent in kilometer, meters, degrees or pixels. A region only needs to
be defined once to read any MISR data product that crosses that

region. There is also functions to map between region and paths and
blocks that cross the region.

11.Data Plane

A data plane is a 2-dimensional array of data returned from the
MtkReadData function. It is of arbitrary data type and dimension,
which is determined by the file/grid/field read. It's relation to a
region is only by approximate coverage. The data plane, in fact, is a
grid of SOM map projected data, defined by the HDF-EOS2 grid
projection parameters and equations. In fact, a map structure is
returned from MtkReadData along with a data buffer that describes
the grid and map projection parameters of the data plane. There are
MISR Toolkit functions that map between data plane line/sample,
geographic latitude/longitude and SOM X/Y.

12.Space Oblique Mercator (SOM)

TBD

13.Packed degree, minutes, seconds

Packed degrees, minutes, seconds or dms is a way to store these
three values in a floating point number. It is of the form
ddd0mm0ss.ssss.

2) How to obtain the MISR Toolkit

The MISR Toolkit can be obtained from the Open Channel Foundation. The
web address is http://www.openchannelsoftware.com. Search for “MISR” in
the Quick Application Search field to access the MISR Visualization and
Analysis Tools page. Select MISR Toolkit. Open Channel Foundation requires a
login and has a license agreement process. Please refer to the Open Channel
Foundation web page for details.

The MISR Toolkit depends on four other libraries which are not obtained via
the Open Channel Foundation. They are HDF-EOS2, HDF4, zlib and libjpeg.
The MISR file format is HDF-EOS2. More information on how to obtain HDF-
EOS2 can be found at http://newsroom.gsfc.nasa.gov/sdptoolkit/toolkit.html.
HDF, zlib and libjpeg can be obtained from http://hdf.ncsa.uiuc.edu.

Download and installation instructions for these additional libraries are
provided in the MISR Toolkit bundled documentation. Please download the
MISR Toolkit from Open Channel Foundation and refer to the accompanying
instructions for library version, download location and installation instructions.

http://www.openchannelsoftware.com/
http://hdf.ncsa.uiuc.edu/
http://newsroom.gsfc.nasa.gov/sdptoolkit/toolkit.html

3) MISR Toolkit Routines

MISR Toolkit Routine Summary Table

Category C Routine Name Description Ref.

Util MtkDataBufferAllocate Allocates 2D data plane buffer of specified type and size

MtkDataBufferFree Frees a data plane buffer

MtkFileGridFieldTypeToDataType Retrieves the data type of a file/grid/field

MtkFileGridToResolution Retrieves resolution of a file/grid

MtkFileGridToFieldList Retrieves field list of a file/grid

MtkFileGridFieldToDimList Retrieves dimension list of a file/grid

MtkFileToGridList Retrieves grid list of file

MtkFileToBlockRange Retrieves block range of a file

FileQuery MtkFileToPath Retrieves path of a file

MtkFillValueGet Retrieves fill value of a file/grid/field

MtkGridAttrGet Retrieves grid attributes of a file/grid

MtkMakeFilename Constructs a MISR filename from it's components

MtkFindFileList Searches a directory for MISR file from it's components

MtkFileType Retrieves MISR product type of a file

MtkFileLGID Retrieves MISR local granule ID (true product name)

MtkFileVersion Retrieves MISR file version

MtkDdToDegMinSec Converts decimal degrees to degrees, minutes, seconds

MtkDdToDms Converts decimal degrees to packed dms

MtkDdToRad Converts decimal degrees to radians

MtkDegMinSecToDd Converts degrees, minutes, seconds to decimal degrees

MtkDegMinSecToDms Converts degrees, minutes, seconds to packed dms

UnitConv MtkDegMinSecToRad Converts degrees, minutes, seconds to radians

MtkDmsToDd Converts packed dms to decimal degrees

MtkDmsToDegMinSec Converts packed dms to degrees, minutes, seconds

MtkDmsToRad Converts packed dms to radians

MtkRadToDd Converts radians to decimal degrees

MtkRadToDegMinSec Converts radians to degrees, minutes, seconds

MtkRadToDms Converts radians to packed dms

MtkBlsToLatLon Converts block/line/sample to lat/lon

MtkBlsToLatLonAry Converts an array of block/line/sample to lat/lon

MtkBlsToSomXY Converts block/line/sample to SOM x/y

MtkBlsToSomXYAry Converts an array of block/line/samples to SOM x/y

MtkLatLonToBls Converts lat/lon to block/line/sample

CoordQuery MtkLatLonToBlsAry Converts an array of lat/lon to block/line/sample

MtkLatLonToSomXY Converts lat/lon to SOM x/y

MtkLatLonToSomXYAry Converts an array of lat/lon to SOM x/y

MtkPathToProjParam Retrieves MISR projection parameters for a given path

MtkSomXYToBls Converts SOM x/y to block/line/sample

MtkSomXYToBlsAry Converts an array of SOM x/y to block/line/sample

MtkSomXYToLatLon Converts SOM x/y to lat/lon

Category C Routine Name Description Ref.

MtkSomXYToLatLonAry Converts an array of SOM x/y to lat/lon

MtkLSToLatLon Converts data plane line/sample to lat/lon

MtkLSToLatLonAry Converts an array of data plane line/sample to lat/lon

MtkLSToSomXY Converts data plane line/sample to SOM x/y

MapQuery MtkLSToSomXYAry Converts an array of data plane line/sample to SOM x/y

MtkLatLonToLS Converts lat/lon to data plane line/sample

MtkLatLonToLSAry Converts an array of lat/lon to data plane line/sample

MtkSomXYToLS Converts SOM x/y to data plane line/sample

MtkSomXYToLSAry Converts an array of SOM x/y to data plane line/sample

MtkLatLonToPathList Retrieves a path list that crosses a given lat/lon

MtkRegionToPathList Retrieves a path list that crosses a given region

OrbitPath MtkRegionPathToBlockRange Retrieves the block range of a given region and path

MtkOrbitToPath Retrieves the path of a given orbit

MtkTimeToOrbitPath Retrieves an orbit/path of a given time

MtkTimeRangeToOrbitList Retrieves an orbit list over a given time range

MtkPathTimeRangeToOrbitList Retrieves an orbit list over a given path and time range

MtkSnapToGrid Snaps a region to a grid of a given path and resolution

MtkSetRegionByLatLonExtentDegrees Sets a region by center lat/lon and an extent in degrees

SetRegion MtkSetRegionByLatLonExtentKilometers Sets a region by center lat/lon and an extent in km

MtkSetRegionByLatLonExtentMeters Sets a region by center lat/lon and an extent in meters

MtkSetRegionByLatLonExtentPixels Sets a region by center lat/lon and an extent in pixels

MtkSetRegionByPathBlockRange Sets a region by path and block range

MtkSetRegionByUlcLrc Sets a region by upper left and lower right lat/lon

ReadData MtkReadBlock Reads a block of MISR data given file/grid/field and
block number.

MtkReadData Reads a region of MISR data given file/grid/field and a
region

WriteData MtkWriteBinFile Writes a raw binary file and info file given a data buffer
and map structure

4) MISR Toolkit Programming Models

In the src directory there are command line utilities that demonstrate the
each function usage.

In all the examples below the user should check the return status of all the
Mtk routines for MTK_SUCCESS.

1. Given geographic lat/lon, find intersecting paths, find orbits for one of
these paths between a given time range, construct MISR product
filenames.

double lat_dd = 32.2
double lon_dd = -114.5
int pathcnt
int *pathlist

status = MtkLatLonToPathList(lat_dd, lon_dd, &pathcnt, &pathlist)

start_time = “20050125000000” // YYYYMMDDHHMMSS
end_time = “20050127235959”
path = pathlist[pathcnt/2] // Pick the center path from pathlist
int orbitcnt
int *orbitlist

status = MtkPathTimeRangeToOrbit(path, start_time, end_time,
&orbitcnt, &orbitlist)

char *filename
status = MtkMakeFilename(“/data”, ”GRP_ELLIPSOID”, “AF”, path,

orbit[0], “F03_0024”, &filename)

free(pathlist)
free(orbitlist)
free(filename)

2. Given a geographic lat/lon and an extent, define a region of interest,
find intersecting paths and corresponding block ranges and read L2AS
data into a data plane, and query map plane coordinates.

Example goes here!

3. Given a geographic lat/lon and an extent, define a region of interest,
read RGB radiance data into data planes from an L1B2, and query map
plane coordinates.

Example goes here!

4. Given a MISR product filename and a block range, define a region of
interest, read a field with extra dimensions which will be
unpacked/unscaled.

Example goes here!

5. Demonstrate FileQuery routines.

Example goes here!

6. Demonstrate OrbitPath routines.

Example goes here!

5) Compiling and Linking Instructions

TBD

6) MISR Toolkit Routine Reference

Bundled with the MISR Toolkit in the doc directory are automatically
generated web pages which provides up-to-date function call interface
definitions, structure definitions, return values, etc.

