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A new airborne rain profiling radar, known as the Dual-Frequency Airborne Precipitation Radar (APR-2), has been developed as a
prototype of the \d-ge ion rain radar i for future missions. APR-2 is capable
of making simultaneous measurements of multiple rainfall parameters, including co-polarized and cross-polarized reflectivities and
vertical Doppler velocities of rainfall and snowfall at both 14 and 35 GHz. It also features several other advanced technologies for
performance improvement, including real-time data processing, low-sidelobe pulse compression, and dual-frequency scanning
antenna. It is different from the Dual-frequency Precipitation Radar (DPR) in the Global Precipitation Measurements (GPM)
Mission in that DPR is physically consisting of two separate radars while APR-2 is a single radar with two frequency channels.

Since August 2001, APR-2 has been deployed on the NASA P3 and DC8 aircrafts in several experiments, including CAMEX-4 and the
Wakasa Bay (AQUA AMSR-E validation) experiments. During these experiments APR-2 has acquired more than 50 hours of data
covering rainfall and snowfall systems, both over ocean and land, from the tropics to mid-latitude. Raw radar data are first processed to
obtain reflectivity, LDR (linear depolarization ratio), and Doppler velocity measurements. The dataset is then processed iteratively to
accurately estimate the true aircraft navigation parameters and to classify the surface return. These intermediate products are then used
to refine precipitation reflectivity and LDR calibrations (by analyzing clear air ocean surface returns), and to correct for aircraft motion.
Precipitation melting layer is then characterized at the APR-2 range resolution of 30m. A multiparametric algorithm is used to classify
the radar returns as either stratiform rain, convection, melting layer, cloud, snowfall or “other’. The resulting 3D dataset is being used for
studying precipitation microphysics and processes, supporting advanced retrieval technique development, and validating spaceborne
measurements. Some examples of these science applications are presented here.
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« Preliminary Screening is performed through the Z14 channel alone: the cross-track A surtace classification index is assigned to each
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CAMEX 4 - Hurricane Humberto

From 00:11 UTC to 00:21 UTC

| September 25th 2001
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Melting Layer Detection — ML1 Results | Melting Layer Detection — 2D extension (ML2)
Wakasa Bay — Wakasa Bay — Wakasa Bay —
Stratiform system with Changing Freezing Stratiform system
embedded convection Level over mountains
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Two approaches to calculate the mean or the boundaries of Rain Rate and Mean Drop Diameter (Mass Weighted)
Particle filter Monte Carlo method

Bayesian (see poster by Z.S. Haddad et al.)

Wakasa Bay — Stratiform system with embedded convection
January 19th 2003 - Flight #3

From 32° 30' N, 136° 30 (at 04:05 UTC) to 32° 30" N, 135° 30' E (at 04:16 UTC)
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rization Analysis of Multiple Scattering Contribution to Ka band Reflectivity measurements
Convective cell - The Ku band LDR return shows a peak at 2.2 km aliitude (corresponding to the melting layer altitude
in the surrounding stratiform rain system) and slowly decreases below it. Such profile indicates the possible presence
of mixed phase hydrometeors below the freezing level due to convection. On the other hand, the Ka LDR retum
increases linearly below the melting layer altitude. Such profile indicates the effect of multiple scattering at Ka band. In
general, multiple scattering affects Ka band reflectivity measurements when large attenuations occur (in fact, at Ka
band, a significant amount of the extinction cross section is due to scattering).

APR-2 measurements are in excellent agreement with previously reported observations. They confirm the validity of the
approximation to the second order for the multiply scanered 5|gnal The ratio of cross- polar vs. co-polar contributions
from multiple scattering is estimated The LD an be used to quantiy the
contribution of multiple scattering to the measured vellecuvuy and remove the cmvespundmg bias in rain rate estimates.
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Im, Second-order multiple scattering theory associated with backscattering
weather radar with a finite beam width, Radio Science, in press.
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Multiparametric Analysis of the Melting Layer

« LDR peaks indicate maximum average eccentricity of
hydrometeors and/or decrease of number drop density due
to increase in vertical velocit

+Z peaks indicate maximum average size of hydrometeors

Nadir beam a1 0409 UTC.

N beam 1 04:10 UTC.

Nadir beam a1 0415 UTC.

A APR-2 Observations
! « Inside the Brightband the altitudes of the peaks of LDR are

010 300m below the corresponding peaks of Z.
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J « The relative offset between LDR and Z peaks is more
evident at Ku band than at Ka band.

« Ku band LDR peak is strongly correlated with the region of
increase in Doppler velocity.

Reflectivity [4BZ], LDR [dB+30] Goal: test and refine existing Melting Layer models see

Poster by S.L. Durden et al.




