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ABSTRACT 

 
The Terrestrial Planet Finder Coronagraph (TPF-C) is a NASA pre-phase-A orbiting 
telescope with the goal of detecting and characterizing visible and near-IR light reflected 
from terrestrial planets.  We use observational completeness, defined as the fraction of 
potentially observable planets that are detected, to determine how well the proposed 
telescope meets the mission goals.  Single visit completeness is optimized by selecting 
the length of observation per target that maximizes the completeness for the ensemble of 
stars.  In this memo we describe the integration time calculations and two approaches to 
single visit optimization.  We also compare the results for different choices of 
coronagraph sensitivity. 
 

1. INTRODUCTION 
 
The Terrestrial Planet Finder - Coronagraph (TPF-C) is an Origins project in the pre-
phase-A stage.  It is a proposed space based telescope designed to detect and characterize 
Earth-like exo-solar planets.  There are 1408 potential candidate stars with B-V>0.3 that 
TPF-C may observe.  Around these candidate stars, a so called "habitable zone" or 
"habisphere" may be defined as the region around the star where liquid water could exist.  
In the Solar System, this zone exists in the spherical shell defined by the orbits of Venus 
and Mars (STDT, 2005).  The TPF-C mission seeks to search this zone for detection and 
characterization of exo-solar planets.  One measure of how well the mission meets the 
goal of detection is completeness, defined as the fraction of potential planets in the 
habisphere that are detected.  Single visit completeness, explored in this memo, is the 
completeness obtained in one observation.  The cumulative completeness, which defines 
the total accumulated completeness, may then be defined as the sum of the completeness 
values obtained for each visited star.   
 
Brown (2004) defined several types of completeness, including obscurational 
completeness, the limit imposed by the IWA restrictions and photometric completeness, 
the limit imposed by instrument sensitivity requirements.  The type of completeness 
explored in this memo is single visit completeness, which includes both the current 
instrument sensitivity requirements and IWA restrictions.  The purpose of this memo is to 
explore optimized single visit completeness.  For single visit completeness, the 
optimization serves to maximize the total number of detectable planets observed (total 
accumulated completeness) in a limited integration time. The mission parameters are 
given in Table 1. 
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Table 1.  Instrument and mission parameters for the TPF-C mission.   
 

 
2. COMPLETENESS 

 
Each star in the mission plan has a habitable zone.  In this memo, this habitable zone 
exists between 0.7 and 1.5AU for a solar type star*.  This zone is scaled based on solar 
luminosity by the rule: 

 LaL 5.17.0 ≤≤ ,     (1) 
where a is the semi-major axis of a planet in the habitable zone.  In order to model this 
habitable zone, we populate the habisphere with Np = 10,000 planets in random and 
evenly distributed orbits with uniformly distributed eccentricities from (0, 0.35).  The 
planet location is defined by 3 Euler angles, φ (rotation about the z axis, 0≤φ≤2π), θ 
(rotation about the x axis, 0≤θ≤2π), and ψ (rotation about the z axis, 0≤ψ≤π), (Brown, 
2004).  It is not necessary to include the rotation angle ψ in definition of planetary orbits 
because it changes neither the separation between the planet and the star nor the phase 
angle.  Additionally, we assume that the inner working angle (IWA) is not a function of 
azimuth.    
 

                                                 
* For future research we use a habitable zone definition of LaL 8.175.0 , which is congruent 
with the SRD (STDT, 2005). 
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Fig. 1.  Diagram of nomenclature for elliptic orbit angles where the line of sight lies in 
the z-axis and the x and y axes are in the plane of the sky. (courtesy: 
http://www.frostydrew.org/observatory/courses/orbits/booklet.htm) 
 
For elliptical orbits, the phase is given by: 

EeEM sin−= .     (2) 
where M is random on π20 ≤≤ M , E is the intermediate angle and e is the eccentricity.  
The true anomaly, f, may then be calculated from the following equations: 
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where r is the distance to the planet from the star, a is the semi-major axis and e is the 
eccentricity.  It is this true anomaly is first applied as a projection onto the x and y axes 
(i.e. the plane of the sky) and then is followed by the z and x rotations.  After rotating the 
coordinate system, the projected distance to the planets is calculated by: 
    22

fzxfzxp yxr += ,     (5) 

where  is the rotated x coordinate (after the true anomaly projection and two 
rotations) and  is the rotated y coordinate (after the true anomaly projection and two 
rotations).  The planetary illumination is dependent on the orbital position of the planet 
relative to the star.  The phase angle is given by: 
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where  is the rotated y coordinate after the true anomaly projection and z rotation.  
Assuming a Lambert phase function, the fraction of observed, relative planet brightness is 
given by: 

fzy

   
π
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where )(βlΦ =1 is the fully illuminated planet.  The magnitude of the planet is a function 
of the fraction of planetary illumination multiplied by the albedo (pe) of the planet.  The 
magnitude of the planet also depends on the planet’s distance from the star and the 
planet’s orientation when viewed from Earth.  The difference between the magnitude of 
the planet and the magnitude of the star, or delta magnitude (Δmag), is given by: 
  ,   (8) rprmag leee log5))(log(5.2)log(5.2 2 +Φ−−=Δ β
where re is the radius of the earth in AU and pe is the albedo of earth.  The determination 
of Δmag and rp for each of the Np planets leads to a plot of projected planet distance vs. 
Δmag.  This figure was first presented by Brown (2005) and is recreated for the orrery of 
Np planets (Fig. 2). 

  
Fig. 2.  The planetary probability density distribution for earth like planets in habitable 
orbits for a solar type star (Hipparcos#62207).  The pink box indicates the current 
sensitivity requirements for the TPF-C mission.   
 
For lower luminosity stars, the shape of the distribution in Fig. 2 stays the same, but 
moves down in the ordinate direction and is compressed in the abscissa towards lower 
apparent separation.  For high luminosity stars, the distribution shifts up in Δmag and 
extends further out in projected IWA.  The TPF-C mission has a maximum Δmag and a 
minimum IWA set by the telescope dimension and stability parameters.  These 
parameters define a box (Fig. 2), the height of which is the Δmag sensitivity limit.  The 
baseline Δmag sensitivity limit is Δmag = 25.   
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The left side of the pink box is the IWA, which is currently set to Dλ4 , giving an IWA 
= 57.0x10-3 arcsec.  However, the IWA is effectively IWA = 65.5x10-3 arcsec after 
accounting for the shape of the mask and telescope rotations.  The projected inner 
working angle or minimum apparent separation (the x-axis in Fig. 2) is defined as the 
IWA multiplied by the distance to the star in parsecs.   
 
The limiting Δmag and projected IWA define a box, as shown in Fig. 2.  The number of 
planets (Nb) that fall within the box divided by the total number of planets (Np) is the 
single visit completeness: 

     
p

b

N
N

Comp = ,     (9) 

In Fig. 3 we plot the completeness as a function of Δmag limit for a typical star.   

 
Fig. 3.  Completeness vs. Δmag.  As Δmag increases, completeness approaches the 
maximum value set by the IWA (observational completeness). 
 

 
3. INTEGRATION TIMES                  

 
The Δmag, and therefore completeness, also varies with integration time.  Integration 
time calculations are given in Brown (2005) as a combination of noise count 
contributions that are dependent on the optical system throughput.  The TPF-C telescope 
is composed of an optical system, including a Lyot stop and an image plane mask.  The 
total system throughput is given by: 

ηLymotot tttT = ,    (10) 
where to is the optical throughput with the Lyot stop and mask removed, tm is the mask 
throughput, tLy is the Lyot throughput and η is the CCD quantum efficiency.   
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The telescope area is carried explicitly in each of the noise count terms.  Detected photon 
counts can be given as: 

τFAC =      (11) 
where F is detected flux, τ is integration time and A is the telescope area give by: 
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where D
dy =  is the ratio of semi-major to semi-minor telescope dimensions.  The SNR 

equation in terms of photon counts is defined as: 
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where Cp is the counts from the planet and Cb is the counts from the noise background.  
The factor of 2 in the denominator arises from the dither maneuver and the differencing 
of two images used to eliminate speckle.  The noise counts in Brown (2005) were 
converted to fluxes using equation (12) in order to later solve for integration time.  There 
are noise contributions (components of Cb) from zodiacal light flux (both earth and exo-
zodi), background speckle flux, dark counts and read noise.  The read noise contribution 
is a constant, independent of integration time.  
 
The flux over the bandpass for the planet is defined as: 
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where  photons cm95000 =F -2 nm-1 sec-1 corresponds to the V-band specific flux for a 
zero magnitude star, Vmag is the visual magnitude of the observed star and ΔMag is the 
sensitivity limit.   
 
The theoretical peak of the point spread function associated with a stellar observation is 
given by: 
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and the solid angle of a detector pixel (in steradians) is: 
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The flux for the associated background starlight speckles is therefore given by: 

   λς ΔΩ⎥
⎦

⎤
⎢
⎣

⎡
=

−

totxPSF

Vmag

bs TnIFF 5.2
0 10 ,    (17) 

where nx represents noise pixels term associated with sharpness and ς  is the uniform 
contrast level, which is the ratio of suppressed starlight to unsuppressed starlight (see 
Table 1 for values).  The noise contribution from zodiacal light is given by:   
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In the Brown model, z is the brightness of the exo-zodiacal light.  The exo-zodiacal dust 
is assumed to be uniform in density and brightness.  It is also assumed that an observation 
looks through the exo-zodi twice, so a factor of two is added to the Brown formulation. 
The flux contribution due to dark noise is given by: 
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where ξ is the dark count rate.  The contribution from read noise is given by: 
     ,     (20) xbr nRC 22=
where R is the read noise, which is independent of integration time.  All of the terms 
except Cbr are associated with integration time and may be converted into fluxes.  Thus, 
the SNR equation becomes: 
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Solving for integration time, τ, yields: 
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This integration time formulation is for one exposure and one rotation.  For multiple 
rotations and observations, τ is multiplicatively increased by the number of rolls, dithers 
and visits.  Since the planet flux is dependent on Δmag (through Fp, eq. 14), integration 
time varies with Δmag as shown in Fig. 4. 
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Fig. 4. Integration time curve.  The curve has an approximately exponential rise 
increasing with Δmag.   

 
 

4. OPTIMIZATION 
 

The TPF-C visit program must be optimized in order to obtain the most benefit (largest 
total accumulated completeness) for the time spent observing.  Without optimization, the 
visit strategy may be arranged based on the limiting requirements of the mission. This 
would imply observing all stars up to the Δmag sensitivity limit as shown by the red dots 
in Fig. 5.  The stars may then be ranked by efficiency, where efficiency is defined as: 

    
τ

ssCompleteneefficiency = .    (26) 

The stars selected for the TPF-C program are those N with the highest efficiency that also 
fit within an integration time limit.  The total integration time is given by: 

          (27) ∑
=

≤
N

i
im

1
ττ

where τi is the time of observation for each star.  We choose the mission time limit to be 
τm = 1 year, as representative of integration time available during a three year mission.  
By varying the Δmag sensitivity (the height of the box in Fig. 2), curves for integration 
times vs. sensitivity are obtained for every candidate star (examples are depicted in Fig. 
5).  Completeness values at given integration times may be computed using the curves for 
completeness vs. Δmag (an example is shown Fig.3) and τ vs. Δmag (an example is 
shown in Fig. 4).  A plot of completeness vs. τ is shown in Fig. 5 for two stars with 
different luminosities. 
 

 8



a) b)a) b)

 
Fig. 5.  Plots of completeness vs. integration time.  a) Completeness curve for a lower 
luminosity star.  b) Completeness curve for a high luminosity star.  The red points 
indicate the point of limiting Δmag. 
 
The completeness curves for lower luminosity stars, whose habispheres are generally 
poorly resolved due to their small physical size, begin to level off at longer integration 
times because the obscurational completeness limit is rapidly attained at small Δmag.  As 
a result, little completeness gain is possible from observing to higher Δmag (see Fig. 6).  
The visit strategy may be optimized by moving the point of observation along the curve 
from right to left, cutting time off of the unproductive parts of the completeness curve 
(the right side).   
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Fig. 6.  Average completeness optimization diagram.  The red circle indicates the point of 
observation for the limiting Δmag sensitivity case and the green circle indicates the point 
of observation for observing a star to its maximum average efficiency.  The blue line is 
tangent to the slope of the curve, indicating the incremental efficiency at the point of 
tangency.   
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Vanderbei (2005) proposed one method of optimization in which each star is observed to 
the point of maximum average completeness per time (green circle in Fig 6).  If all stars 
were identical, this would maximize overall efficiency.  After observing to this point, the 
integration is then stopped for every star.  Since all the stars in the optimization are not 
identical, the stars are sorted by best average efficiency. The list of stars whose 
cumulative integration time is less than τm is then selected for observation. 
 
Another optimization method involves integrating until a fraction of completeness at 
limiting Δmag is achieved (depicted by the different color lines in Fig. 7).  This fractional 
observation limit is iterated over a range of values from (50%, 90%) of the limiting 
Δmag.  The integration is then stopped and the stars are sorted based on average 
efficiency with the new observation time.  The candidate stars whose cumulative 
integration time is less than τm are then selected for observation. 

t70 for 0.7Cmax

t80 for 0.8Cmax

t90 for 0.9Cmax

Cmax

 
Fig. 7.  Completeness cutoff optimization diagram.  Integration is stopped when the curve 
reaches a fraction of the maximum completeness. 
 
Both of the previous methods performed worse than the non-optimized case for limiting 
Δmag and therefore are not desirable techniques.  However there are two methods which 
performed better than the limiting Δmag case.  These are the auction and the efficiency 
threshold cutoff optimization methods.   
 

4.1 Auction 
 
Auction optimization was first presented by Brown (May, 2005).  This method seeks to 
optimize the cumulative completeness by optimizing the time spent observing each star 
using the most productive portions of the completeness curve. 
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The first step in this optimization process is to obtain completeness curves for all 
candidate stars by observing up to the limiting Δmag (as shown by the red dot in Fig. 5).  
A star then “bids” its least efficient (last) hour of integration time.  The hour of the lowest 
bidder (least efficient of the entire list) is then cut from the right side of the completeness 
curve (as depicted in Fig. 8a).  This elimination, or auction, occurs over the whole star 
list, one star and hour at a time.  A star is permitted to participate in the auction until it 
bids out all of its hours.        
a) b)

 
Fig. 8.  Auction optimization vs. efficiency threshold cutoff (ETC) optimization for a 
given star  a) Auction optimization cuts integration time hour by hour (an hour is cut for 
each of the red lines) based on the time which is least efficient.  b) Efficiency threshold 
cutoff optimization eliminates the portion of the curve to the right of the red line, which 
is above an ETC.   
 
In Fig. 8a, each of the red lines represents an auctioned cut of one hour of integration 
time.  This auction eliminates integration time from stars until a time goal is met.  Figure 
9 shows a block diagram of the auction process. 
 

 
Fig. 9.  Auction diagram for single visit completeness. 
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The auction begins by setting an initial value for Tcut, the number of hours to be auctioned 
from the full list.  Then the list of stars with corresponding completeness curves is read 
into the program.  The integration time is reduced, one hour at a time, as shown in Fig. 
8a, until a time goal (Tcut) is met.  The stars are then sorted from highest to lowest 
efficiency and the set of stars, AN(Tcut) satisfying equation (27) is kept.  After iterating 
Tcut over a range from 0 (no hours cut) to Tlimit (τm minus Tcut), the set AN with highest 
total completeness is selected.  In this way, the auction provides an optimization of single 
visit completeness over both average efficiency and auctioned time. This optimization 
method performs better than the non-optimized limiting Δmag case.  Results are 
presented in sect. 5.   
 

4.2 Efficiency Threshold Cutoff Optimization 
 
An equivalent optimization technique method involves the use of an efficiency threshold 
cutoff (ETC).  In this optimization method completeness curves are discretized into 
incremental efficiency steps (Brown’s auction does not require this step).  Each 
incremental efficiency step is defined as: 

τΔ
Δ

=
ssCompleteneefficiencylincrementa ,   (28) 

where Δτ is given in hour increments and ΔCompleteness is the completeness over a 
given hour of integration time.  Incremental efficiency, therefore, defines the slope of the 
completeness curve for increments of Δτ.  In ETC optimization, integration times are 
reduced until the incremental efficiency is at or above the efficiency threshold cutoff.  A 
diagram of this procedure is shown in Fig. 10.   
 

 
Fig. 10.  Efficiency threshold cutoff optimization diagram for single visit completeness.   
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The optimization process begins by setting a value for ETC instead of setting a value for 
Tcut as in the auction optimization.  A list of stars and their corresponding completeness 
curves is then read into the program.  All time that has an incremental efficiency below 
the ETC is cut from the right side of the completeness curves (as depicted in Fig 8b).  
The stars are then sorted by highest to lowest efficiency and the set of stars, AN(ETC) 
satisfying equation (27) is kept.  After iterating ETC over a range from 0 (no hours cut) to 
ETCmax (the efficiency cutoff associated with cutting enough time to reach τm), the set AN 
with highest total completeness is selected.  Like the auction, this optimization combines 
the incremental and average efficiencies to obtain an optimized visit timing that is better 
than the non-optimized case.   
 
Both auction and ETC optimizations produce equivalent results (see sect. 5) as both 
methods cut integration time based on incremental efficiency and then optimize over 
average efficiency.  The efficiency threshold cutoff optimization, however, uses only one 
iteration, over ETC, instead of two iterations as in the auction case.  It therefore runs 
faster, and thus was employed for future program completeness work.   
 
 

5. RESULTS 
 

The two different optimizations described in sections 4.1 and 4.2 give comparable results, 
which are shown in Table 2.  There is a substantial benefit from increasing the sensitivity 
requirement from Δmag=25 to Δmag=26, as evident in Table 2.  
  

ETC Auction
============================================
ΔMag # Stars # Planets #Stars #Planets
25 138 32.60 135.21 32.59
25.5 125 38.29 122.77 38.32
26 115 41.10 113 40.96
27 114 42.16 106 41.04  

Table 2.  Comparison of results over a range of Δmag for the two different optimization 
methods.   
 
In Table 2, #Stars is the number of targets observed in one year and #Planets is 
equivalent to the total accumulated completeness.  The #Stars values for the auction were 
interpolated when the limit of one year of integration time fell between two stars.  In 
order to directly compare to values produced by Brown, the values in Table 2 were 
computed with the throughput parameters given in Brown (2005).  The case for the new 
throughput parameters, consistent with the current baseline optical prescription (Table 1), 
is shown in Fig. 11. 
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a) b)

 
Fig. 11.  Auction completeness optimization for different sensitivity limits.  The long 
dark line indicates the completeness for the limiting Δmag case, where we employ the 
current baseline throughput parameters (Table 1). 
 
In Fig. 11a and 11b, zero hours cut is equivalent to the Δmag limiting case where all stars 
are observed to the maximum Δmag (25 for 11a and 26 for 11b).  Figure 11a shows that 
there is minimal gain from the non-optimized limiting case.  However, Fig. 11b shows 
that for the Δmag = 26 case, there is a substantial increase in the completeness from both 
the baseline at Δmag = 26 (the dark line in Fig. 11b) and the maximum of the Δmag = 25 
(the highest bar in Fig. 11a) case.   
 
This simulation demonstrates that increasing the sensitivity requirements allows for more 
scientific gain (Fig. 11b shows approximately 50% more habitable zones searched than in 
Fig. 11a), while reducing the number of star searched (Table 2).  However, since this 
optimization is based on a single visit, these results could change with the addition of 
multiple visits for a given star in a program completeness optimized program.   
 
 

6.  CONCLUSIONS 
 

Completeness is a measure of how well the TPF-C mission meets its scientific 
requirement of planet detection.  Completeness versus integration time curves are 
obtained for all possible candidate stars by relating completeness, instrument sensitivity 
(Δmag) and integration time.  These curves are used to determine an optimized single 
visit strategy for TPF-C.  The non-optimized case has all observations extending to the 
Δmag sensitivity limit.  The visit strategy can be optimized by looking at how eliminating 
inefficient portions of the completeness curve for the visited.   
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We have explored several optimized strategies for maximizing completeness for the TPF-
C mission and have demonstrated two different, but equivalent, optimization techniques 
that perform better than the non-optimized limiting Δmag case.  The results from the 
auction and ETC optimization techniques indicate that increasing the sensitivity 
requirement allows for a large increase in the total accumulated completeness.  Future 
work on completeness should take into account multiple visits to a star along with 
strategic and tactical factors which affect mission development and planning (Brown, 
July, 2005).  
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