Transforming the Deep Space Network into The Interplanetary Network

William Weber
Robert Cesarone (Presenter)
Douglas Abraham
Peter Doms
Richard Doyle
Charles Edwards
Adrian Hooke
James Lesh
Richard Miller

Jet Propulsion Laboratory
California Institute of Technology

54th International Astronautical Congress
Bremen, Germany
September 29 - October 3, 2003
Topics

- Strategic Motivation
- Transformation of the Mission Paradigm
- Performance Transformation
- Topological Transformation
- Service Model Transformation
- Summary
The NASA Strategic Plan

Objective 10.3

Develop breakthrough information and communication systems to increase our understanding of scientific data and phenomena.

A Key Item of JPL's Mission Statement is:

To enable a virtual presence throughout the solar system by creating the Interplanetary Network

Interplanetary Network Vision

Formal: “Enable telescience and telepresence throughout the Solar System - and beyond.”

Colloquial: “Bring the sensors to the scientists and the planets to the public.”
Transformation of the Mission Paradigm
Transformation of the Mission Paradigm

Low-Earth-orbit solar and astrophysical observatories.

Observatories located farther from Earth.
(e.g., SIRTF, JWST)

Single, large spacecraft for solar and astrophysical observations.

Constellations of small, low-cost spacecraft.
(e.g., MMS, MagCon)

Preliminary solar system reconnaissance via brief flybys.

Detailed Orbital Remote Sensing.
(e.g., MRO, JIMO)

In situ exploration via short-lived probes.

In situ exploration via long-lived mobile elements.
(e.g., MER, MSL)
Trend #1: More Spacecraft Supports

- In 1987
 - DSN fielded 9 deep space antennas
 - These antennas routinely tracked ~ 6 spacecraft
- Today
 - DSN fields 12 deep space antennas
 - These antennas routinely track ~ 26 spacecraft

- Over the last 15 years, the deep space mission set has expanded fourfold whereas the tracking assets have only grown by 33%.

- The DSN must also support those near-Earth spacecraft that need to compensate for low on-board EIRP with high ground receive capability.
 - Typically constellation spacecraft (spinners with omni antennas)
Future U.S.-Led Science Missions from the Code S Roadmaps

- GLAST
- GRAVITY PROBE B
- SWIFT
- SPIDR
- EUSO
- WISE
- LISA
- DARK ENERGY PROBE
- EXPLORER MISSIONS
- CONSTITUTION-X
- INFLATION PROBE
- BLACK HOLE FINDER
- PROBE
- EXPLORER MISSIONS
- BEBIG BANG OBSERVER
- BLACK HOLE IMAGER
- EXPLORER MISSIONS

Key

- DSN Support Likely
- DSN Support Possible
- DSN Support Unlikely

*Indicates possible overlap between SSE and SEC.

**SSE also based on Planetary Decadal Survey; some missions may be New Frontiers missions; some SEU & SEC missions derived from latest Explorer awards.

***Some missions may be Explorer or Discovery.

Very Approximate Launch Epoch

- **2008**
- **2013**
- **2018**
- **2023**
Trend #2: Greater Mission Operations Complexity

- Increased coordination between separate spacecraft elements within a mission and among missions

- Challenges for the next decade:
 - 6 or more constellation missions
 - 7 or more missions involving proximity (relay) links (Several at Mars)
 - Up to 7 LaGrange Point missions (incl. the 4 spacecraft Constellation-X)
 - Up to 5 passive formation flight missions
 - At least 1 3-spacecraft active formation flight mission (LISA)
 - 7 or more missions with entry-descent-landing at an extraterrestrial body
 - At least 3 missions using aerobraking
 - At least 3 missions using low-thrust propulsion

- Challenges for the following decade:
 - Autonomous coordination among in-situ exploration elements
 - Autonomous coordination among constellation elements
Notional View of Possible Future Proximity Link Missions at Mars
Trend #3: Order-of-Magnitude (or more) Increases in Downlink Data Volumes

- **Drivers**
 - Increasingly capable science instruments generate large volumes of data to be transmitted to Earth via high data rates links
 - Long-duration orbital remote sensing missions
 - Long-lived mobile elements for *in-situ* exploration
- **This Decade:**
 - 10 x to 100x increase in downlink data rates likely
 - Applies to both deep space and near-Earth missions
- **Following Decade:**
 - An additional 10x to 100x increase is likely
Spacecraft data storage trends suggest collected data volumes will increase by 1-to-2 orders of magnitude.

Near-Earth downlink rates also appear to be increasing 1-to-2 orders of magnitude.

Project-estimated daily data volumes also exhibit an increase of 1-to-2 orders of magnitude.

Deep space downlink rates are increasing by 1-to-2 orders of magnitude as well.
• **Problem:** Mission concepts more than 10 years out exhibit a heavy bias towards today's technologies.

• **What We Know:** Scientists want to be able to carry out science investigations at other planets with same ease, precision, and resolution as they can on Earth.

• **Solution:** Use current Earth-based capabilities as an indication of what will be needed for future deep-space capabilities.

• **Case in point:** Remote Sensing from Space

Earth Remote Sensing:

- **1958**
 - B&W Photos
 - Color Photos

- **2002+**
 - Multi-Spectral
 - Synthetic Aperture Radar
 - Hyper-Spectral
 - Ultra-Spectral

Remote Sensing at Other Planets:

- **1958**
 - B&W Photos
 - Color Photos

- **2002+**
 - Multi-Spectral
 - Synthetic Aperture Radar
 - Hyper-Spectral
Growth in Downlink Data Rates

Data for Science

Direction of Increasing Data Richness

- Mars Global Surveyor
 - Range: 2.66 AU
 - Frequency: X-band
 - XMIT Power: 25W
 - XMIT Antenna: 1.5m HGA
 - RCV Antenna: DSN 34m

- Synthetic Aperture Radar

- Multi-Spectral & Hyper-Spectral Imagers

Data for Public

Direction of Increasing Sense of Presence

- Needed Improvement

- Video

- HDTV

- IMAX

Direction of Increasing Data Richness

Range of Data Rates (bits/s): 1E+04 to 1E+08
Trend #4: Order of Magnitude (or more) Increases in Uplink Data Volumes

- Drivers
 - Increasingly capable on-board -- and reprogrammable -- processors, with increasingly sophisticated software, will require large volumes of data to be transmitted from Earth via high data rate links.
 - JWST will require a 16 kbps uplink rate for instrument calibration flats.
 - Uplinking will transition from low-level commanding to uploads of large image files and software updates.
 - Autonomy may simplify the uplink process BUT increase uplink data volumes.
- This Decade:
 - Emergence of a deep space mission (JWST) with uplink rate > 2 kbps.
- Following Decade:
 - 10 x to 100x increase in uplink data rates likely.
PROBA

ESA's Project for On-Board Autonomy

- Onboard autonomous agent provides for routine housekeeping and resource mgmt.
- Instrument planning, scheduling, and pointing also handled autonomously
- Requires upload of target request file

Telecom Impacts:
- Reduction of downlink data associated with engineering telemetry
- 4 kbps uplink (2x > than current rate)

Space Technology 6

Autonomous "Sciencecraft" Demonstration

- Onboard autonomous agent selects interesting features for observation
- Data return decisions based on change criteria
- Some onboard analysis of data

Telecom Impacts:
- Significant reduction of downlink data associated with science
- 50 kbps uplink (25x > than current rate)
The Changing Operations Paradigm:

1. More onboard autonomy, less low-level commanding.
2. In situ exploration elements as consumers of orbital remote sensing data.
3. Significant increase in uplink rate to accommodate software uploads.
 - In-flight-retargetable cruise missile, UAV, and UGV analogies suggest an uplink rate of 200 kbps.
 - 100x increase over today's uplink rate.
Performance Transformation
Performance Transformation

From Science Constraint to Science Enhancement

First Step: Renovate and complete the “foundational” DSN

- Refurbish the existing 70m antennas
 - Continue to provide maximum communications performance (Uplink & Downlink) for critical and/or anomalous events
- Assess the utilization of 34m antennas
 - A case may exist for 1, or possibly 3, more
 - Provide adequate uplink capacity
- Transition from X-band (8 GHz) to Ka-band (32 GHz) provides:
 - 4x gain (6 dB) - after accounting for losses
 - 10x bandwidth availability (500 MHz vs. 50 MHz)
 - Though significant, this falls short of the eventual need
DSN Antennas

70m Antennas

Goldstone: DSS 14
Canberra: DSS 43
Madrid: DSS 63

34m (Beam Wave Guide) Antennas

Goldstone: DSS 24, 25 & 26
Canberra: DSS 34
Madrid: DSS 54 & 55
The leap from 4x to 100x improvement in downlink requires:

- Development of advanced flight telecommunications equipment
 - R adios (transponders, transceivers)
 - P ower amplifiers - incl. kW class for nuclear powered missions (JIMO)
 - D eployable antennas

- Addition of greatly expanded ground aperture at RF
 - O ption 1: Implement additional large (34m-70m) monolithic antennas
 - O ption 2: Implement a large array of small (12m) antennas
 - May achieve 10x-100x (or more) gain at lower “cost per unit aperture”
 - Validation of this assertion is the objective of an array prototype task

- Optical communications can also provide “Orders-of-Magnitude” gain
 - N etwork of 6 - 9 10m ground-based “Photon Buckets” located so as to provide longitude coverage and weather diversity
 - 1 or 2 7m telescopes in high Earth orbit
 - O ther options: Ground-Space hybrid; Large Array of Small Telescopes
New Flight & Ground Developments

Flight Telecommunications Equipment

Radios
- Transponders
- Transceivers

Power Amplifiers
- Solid State
- Traveling Wave Tube

Antennas
- Deployable
- Inflatable

Large Array of Small Antennas

Deep Space Optical Communications
Towards Uplink > 100x

- Classically, Effective Isotropic Radiated Power (EIRP) is provided on target by means of a high power transmitter on a large microwave antenna
 - Needed for routine high-rate uplink or emergency communications
- Today’s maximum DSN X-band performance is 20 kW on a 70m antenna
 - Raises issues about 70m longevity (currently 30-40 years old)
- The DSN also currently employs 20 kW at X-band on 34m antennas
 - Smaller aperture results in 6 dB performance decrease
 - Raises issues about whether there are a sufficient number of 34m antennas
- Alternative approach involves the use of arrayed uplink
 - Somewhat analogous to arraying antennas for downlink
 - But it is difficult to have knowledge and control of the phase front
 - Closed loop control with deep space vehicles is not possible
 - Nevertheless offers great potential to put extremely high EIRP on target
 - Technology effort will strive to demonstrate feasibility and retire technical risk
 - Applicable to existing large antennas or to a large array of small antennas
Uplink Arraying
Performance Transformation

Navigation & Flight Control

Example Challenges

- Precision Landing
- Aeromaneuvering
- Multi-Spacecraft Ops

Example Solutions

- Higher Frequency RF Tracking
- Navigation Via In Situ RF Links
- Optimetrics
- Autonomous Navigation
Topological Transformation
From US/NASA to a Virtual International Network

- Deep space communications has traditionally been done by the US Deep Space Network, operated for NASA by JPL

- Other entities are now seeking a role in this aspect of space exploration
 - The European Space Agency (ESA) has recently commissioned a 35m antenna at New Norcia, near Perth, Australia
 - Additional ESA 35m antennas may follow (e.g., at Cebreros, Spain)
 - Agenzia Spaziale Italiana (ASI) has expressed interest in a deep space tracking role for the Sardinia Radio Telescope
 - Centre National d'Etudes Spatiales (CNES) has also expressed interest in implementing and operating deep space tracking stations

- A “Virtual International Network” may naturally come into being
 - Seamless interfaces among variously-owned assets will enable efficient data transfer
 - End users will be connected to their spacecraft without ever knowing -- or caring -- about the routing used to establish the connection
Site Diversity

- An Earth-based optical communications network will likely comprise 6 to 9 sites
 - Good longitude coverage
 - Weather diversity
- A Large Array of Small (RF) Antennas may eventually expand to sites other than the existing DSN complexes
 - Maximizes the likelihood of achieving good Ka-band links, which are also susceptible to weather effects
- Thus the DSN may transform from a 3-Complex Network into a 6- to 9-Complex Network - perhaps even more
 - For cost-effectiveness, most, if not all, additional sites will be designed to function autonomously, with minimal infrastructure.
Topological Transformation

From Earth-Based to Earth + Space-Based

- Mars Network -- the first “Planetary Area Network”
 - Relay infrastructure in Mars orbit enables expanded link availability, high rate communications and *in-situ* navigation
 - Currently comprises radio relay systems on existing science orbiters
 Mars Global Surveyor, Mars Odyssey, Mars Express, Mars Reconnaissance Orbiter (in development)
 - By 2010 will include a dedicated Mars Comsat
 Mars Telecommunications Orbiter
 - Key characteristics:
 - Standardized proximity link capability
 - Delay-tolerant, file-based communications protocols for seamless data transfer from Mars surface to scientists and public on Earth
 - “Planetary Area Networks” will eventually appear at other locations around the solar system
 - These will be linked together by “big pipe” trunk lines
Mars Network

Trunk line to Earth
From Point-to-Point to Networked Architecture

- Classically, deep space communications involved a point-to-point link between an asset in deep space and a large DSN antenna on Earth.

- The future is likely to witness an expansion in the number of:
 - Exploration assets in deep space
 - Relay communications assets (e.g., Mars Network)
 - Communications assets at the Earth (Antennas, Telescopes)

 Note: These can all be thought of as nodes in a communications network

- An expansion in the number of computers (nodes) was a key element in the development of the terrestrial Internet.

 - By analogy, a networked architecture will evolve to support deep space communications.
 - This is coming to be known as the Interplanetary Network.

- This networked architecture **WILL NOT** emplace a router on every planetesimal in the solar system.

- But it will provide routing options for end-to-end links all the way from a remote asset in deep space to an investigator's desktop or a school classroom.
Internationally Standardized Communications Protocols

• In a modern network, several underlying layers of standard data communications protocols support exchange of information among user applications

 • Each layer has rules by which the sending and receiving ends can perform a modular part of the total dialog

 • A layered architecture is highly amenable to evolution since layers can be replaced, as technology changes, without bringing down the whole system

• CCSDS* has worked to define and reach international agreement on space link communications standards and protocols

 • Recently the CCSDS has been expanding its scope to include new end-to-end "space internetworking" capabilities

 • An example is the "Bundling" protocol suite that provides a long-haul analog of the Internet's TCP/IP suite

* CCSDS = Consultative Committee on Space Data Systems
Layered Network Architecture

- **Remote Asset** = Endpoint of a communication line in deep space or on a planetary surface
- **Relay Asset** = Waypoint of a communication line in deep space (e.g., MarsNet)
- **Local Asset** = Waypoint of a communication line on Earth or in near-Earth space (e.g., 70m, 34m or Arrayed Antennas; Photon-Buckets; Earth-Orbiting Optical Relay Terminal; non-NASA assets)
- **Central Asset** = Control point & distribution point for DSMS (i.e., JPL)
- **End User Asset** = Endpoint of a communication line at the user's location
Service Model Transformation
From Complexity to Simplicity

In the early days of space exploration
- Missions were relatively simple - at least as viewed from today!
 * Typical mission was a planetary flyby - with some notable exceptions!
- But they had complex interfaces among mission & DSN elements
- Telecommunications capability increased at a dramatic pace
 * Flight Systems; Ground Systems; Frequencies; Coding
- Custom equipment / interfaces and customer involvement were the norm
- This worked well with 5 - 6 missions operating simultaneously

The current era requires a new approach, called the Service Paradigm
- Driven by the number of missions, and their complexity
- Innovations that have proven workable become standardized services
- Users need not have intimate knowledge of the information systems
- Service Contracts are written during design and executed during operations
- End Goal is transparent acquisition of science or outreach data so that users are free to focus on their discipline objectives

Standardization and the Service Paradigm encourage technological progress
- Scarce resources are not expended on “reinventing the wheel”
- Layered architecture easily accommodates technological innovation
Network & Service Reliability

- To make the Service Paradigm a reality, it will be necessary to significantly upgrade the reliability and availability of the DSN
 - When services are delivered with very low failure rates, users have little reason to delve into how they are provided
 - By contrast, nothing will get a user scrutinizing the service provision system faster than failures to deliver
- Today’s DSN runs at ~ 98% availability
 - Acceptable for a custom-equipped “R&D” type of facility
 - Probably not acceptable for supporting the expanded customer base, with increasingly complex mission operations
 - Quantitative improvement goals remain to be specified and implemented
 - Will entail upgrade or replacement of obsolete systems, components and software
Toward Links + Higher Level Services

- Communications and navigation infrastructure in the remote environment will enable locally coordinated operations in lieu of links to Earth
 - Automated mission planning S/W will act as a “proxy” for science investigators to take advantage of serendipitous exploratory opportunities

- Transparent, high-level, end-to-end services will connect scientists and the public to the remote assets
 - Accessible from research institutions, museums or home desktops

- High bandwidth links will enable the interaction between sensors and users to evolve toward operation in a virtual and immersive environment
 - Explore a remote environment by “being” the spacecraft