Formation Algorithms and Simulation Testbed

Matt Wette, Dan Scharf, Eli McMahon, Ed Benowitz
Jet Propulsion Laboratory
4800 Oak Grove Dr.
Pasadena, CA 91109

2003 TPF Expo
Oct 14-16, 2003
Pasadena, CA
Motivation for FAST

- Some TPF concerns regarding Formation Flying (FF):
 - System Functionality
 - formation deployment and initialization
 - collision avoidance (in the presence of faults)
 - fuel balancing
 - complexity of end-to-end operation
 - Coarse Formation Control
 - collision avoidance
 - sun avoidance
 - target acquisition
 - Fine Formation Control
 - station-keeping
 - on-the-fly observation
 - instrument interactions
 - synchronized thruster firing
- These issues, among others, can be addressed by simulation.
The FAST Approach

- **Our approach:**

 Consider existing formation flying algorithm designs:
 - NASA Code R Distributed Spacecraft Technology
 - StarLight Project Phase A development

 Leverage above to jumpstart design of formation flying algorithms for TPF.

 Implement in a flight-like distributed real-time simulation environment:
 - NASA Code R Distributed Spacecraft Technology
 - Apply scenarios to shake out the system.

- **Result**

 We are developing a simulation testbed to demonstrate the end-to-end operation of multiple spacecraft formation flying in a distributed real-time environment.
Features of the FAST

- Advanced algorithms for formation flying
 - Formation Guidance (with collision avoidance)
 - Formation Estimation
 - Formation Control
- Relative sensor suite models (acquisition, medium, fine sensors)
- Distributed real-time execution on multiple flight-like processors
- Distributed real-time simulation on Beowulf cluster
- Inter-spacecraft communication model
 [latency, throughput, connectivity]
- Inter-spacecraft time synchronization
- Fault injection
 - spacecraft computer reset
 - thruster misfire
 - sensor failure
 - inter-spacecraft communication dropouts
- Functional interferometer model
 [demonstrates capability for formation flying to interferometer hand-off]
FAST Plan

- Demonstration of distributed real-time simulation environment
 2003: StarLight design running on distributed real-time system
 - Formation initialization
 - Stop-and-stare
 - Re-targeting

- TPF formation flying nominal operations
 2004: TPF nominal op's on desktop workstation
 - Formation synchronization
 - Observation on-the-fly
 - Basic collision avoidance
 2005: TPF nominal op's in distributed real-time (DRT)
 - Above TPF design executing on distributed real-time testbed

- TPF formation flying off-nominal operations
 2005: TPF off-nominal op's on workstation
 - Robust collision avoidance (e.g., S/C reset while in re-targeting maneuver)
 2006: TPF off-nominal op's on DRT system
 - Above in distributed real-time, with fault protection software

- TPF formation flying operation with interferometer
 2006: TPF operation with hand-off to interferometer on DRT system
 - Formation flying with demonstration of hand-off to interferometer
FAST in its Current Form

- Formation Attitude Control Algorithms (FACS) run with Software Executive on flight-like PowerPC CPUs running VxWorks.

- Environment simulation runs on a "cluster computer" with Intel Pentium processors running a real-time Linux.

- Console for commanding and data analysis on desktop workstation.
FAST Hardware Block Diagram

- Flight-like algorithms and software executing on flight-like processors.
 VxWorks real time operating system on PowerPC processors
- Scalable multi-spacecraft simulation executing on cluster computer.
 Linux with Real-Time Application Interface module on x86 processors.

Flight Algorithms and Software

Environment Simulation

Terrestrial Planet Finder Mission

Origins Mission

A NASA

Origins Mission

Flight Algorithms and Software

RTAI-Linux / x86

dynamics simulation

RTAI-Linux / x86

dynamics simulation

RTAI-Linux / x86

dynamics simulation

Sun Workstation

Cluster Head Node

Ground System Console
Summary

- TPF has funded the Formation Algorithms and Simulation Testbed to address concerns with the development of formation flying for flight.
- The FAST is pushing FF technology readiness toward flight: formation flying algorithms will be executing in a flight-like software executive, on flight like processors with flight-like environment.
- The FAST will help prove that formation flying will work for TPF:
 - performance of formation flying is achievable
 - robustness of formation flying is achievable