
AAS 03-545 

CONTROL OF NODE CROSSINGS IN 
SATURNIAN GRAVITY-ASSIST TOURS 

Nathan Strange* 
Jet Propulsion Laboratory / California Institute of Technology 

4800 Oak Grove Drive, Pasadena, CA, 91109-8099 

Abstract 
In the Saturnian system, the control of the node-crossing point is important to avoid 

debris in Saturn’s ring plane and to target flybys of moons other than Titan. This paper 
describes how to use gravity assists to control a spacecraft’s node crossings. 

INTRODUCTION 

When Galileo first turned his telescope to Saturn in 1610, he noticed that it had strange 
’handles’. Christiaan Huygens later explained that these mysterious handles were actually 
giant rings surrounding the planet. Saturn’s ring system is the largest in the Solar System, 
with the main rings spanning a diameter of nearly 274,000 km. 

Saturn has 30 named moons as of this writing. Saturn’s largest moon, Titan, is larger 
than the planet Mercury and is the only moon in the Solar System to have a significant at- 
mosphere. Titan’s atmosphere is principly Nitrogen and 50% denser than Earth’s. Saturn’s 
other moons are much smaller than Titan, but fascinating nonetheless. Enceladus has the 
highest albedo of any object in the Solar system. Iapetus is a strange world of half snowy 
white terrain and half terrain as dark as lampblack. Table 1 shows the orbits of the major 
satellites’ of Saturn, starting with Mimas which is just outside of the main rings. 

Of Saturn’s satellites, only Titan has strong enough gravity to be used for a gravity-assist 
tour. Tours of the Saturnian system, such as the Cassini t o ~ r , ~ - ~  are constructed from a 
sequence of Titan to Titan transfers. Flybys of Saturn’s other moons may be accomplished 
by targeting a Titan to Titan transfer orbit to pass near a moon, but this is difficult. For 
example, the Cassini tour consists of 45 Titan flybys, but only 7 targeted flybys of Saturn’s 
other moons. 

Since most of Saturn’s moons are in nearly equatorial orbits, it is easiest to find flybys 
of these moons with a spacecraft in a low inclination orbit. However, high inclination orbits 
are highly desirable to observe Saturn’s rings, magnetosphere, and the high latitudes of the 
planet’s atmosphere. 

Saturn’s rings make it difficult for a spacecraft to get close to the planet, as the ring 
debris may destroy a spacecraft that passes directly through the rings. In high inclination 
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Table 1: Saturn's Major Satellites 

Semi-Major Axis Period Eccentricity Inclination GM (pLga) Radius 
[Rsl [days] (Saturn eq.) [km3/s2] [km] 

Mimas 3.08 0.94 0.0206 0.01" 2.5 199 
Enceladus 

Tethys 
Dione 
Rhea 
Titan 

Hyperion 
Iapetus 
Phoebe 

3.95 
4.88 
6.26 
8.74 
20.25 
24.55 
59.03 
214.7 

1.37 
1.89 
2.74 
4.52 
15.9 
21.3 
79.3 
550.3 

0.0001 
0.0001 
0.0002 
0.0009 
0.0288 
0.0175 
0.0284 
0.1644 

0.01" 
1.09" 
0.02O 
0.00" 
0.36" 
1.01" 
15.42' 
152.0' 

5.6 
44.1 
77.3 
173.4 

8978.1 
1 .o 

116.9 
0.9 

249 
523 
560 
764 
2575 
142 
718 
110 

orbits, it is possible to have a periapsis closer to Saturn than the outer edge of the rings, 
as long as an orbit's node crossing does not pass through a ring. Cassini passes through a 
gap between the F and G rings upon arrival at Saturn and achieves a periapsis of only 1.3 
R s  (Saturn Radii) for its orbit 

Much work has been done at JPL to study high inclination tours for the Cassini mis- 
~ i o n . ~ - ~  This paper extends this work to develop new analytic methods for targeting a 
spacecraft's node crossing point with Titan gravity assists. These techniques will enable 
Saturn tour designers to more easily avoid ring debris and find flybys of Saturn's other 
moons. 

Future Saturn tour designs, such as the Cassini extended mission, will benefit from these 
techniques. However, the derivation of these techniques is general and may be applied to 
other high-inclination tour designs at Jupiter, Uranus, and Neptune. 

ANALYSIS 

We will assume that the spacecraft is in a simple twebody conic orbit around the central 
body (e.g. Saturn) except when it is in the immediate vicinity of the gravity-assist body. 
At that time, we will treat the spacecraft as being in a twebody conic orbit around the 
gravity-assist body (e.g. Titan). Such an approach is referred to as the method of Patched 

From these assumptions, the conic equation gives the position of the spacecraft 
relative to the central body in the spacecraft's orbit plane. (Refer to the Notation section 
for an explanation of the symbols and subscripts used in this and subsequent equations.) 

The line of nodes of an orbit, illustrated in Fig. 1, is the line where the orbit plane 
intersects a reference plane, usually the central body's equatorial plane. The point where 
the orbit crosses from the southern hemisphere to the northern hemisphere is the ascending 
node, and the point where the orbit crosses from north to  south is the descending node. The 
argument of periapsis (wsc) is defined as the angle from the ascending node crossing to the 
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Figure 1: The Line of Nodes 

periapsis of an orbit (see Fig. 1). Since true anomaly (fsc) is measured from periapsis, the 
true anomaly of the ascending node crossing is -wsc and the true anomaly of the descending 
node is 7~ - wsc. Therefore, the radius of the ascending node (rase) and the radius of the 
descending node ( rdsc )  are given by: 

a&- e:c) - - asc(1 - e%) 
rdsc = 1 + esc cos(7~ - wsc) 1 - esc cos(wsc) 

(3) 

Equation 2 and Eqn. 3 may each be solved for the argument of periapsis, yielding the 
following two equations: 

1 asc 2 cos(wsc) = - [ - (1 - est) - 11 
esc rasc 

(4) 

( 5 )  

We may now write expressions for the radius of each node crossing in terms of the radius 
of the other node crossing: 

Rather than use the planet's equator as the reference plane for defining node crossings, 
from now on we will use the orbit plane of the gravity-assist body, Titan. With this choice 
we ensure that Titan encounters in an inclined orbit must occur at a node crossing.a The 

"If the spacecraft's orbit is not inclined, the longitude of the ascending node is arbitrary and may be 
chosen so that an encounter occurs at a node crossing. 
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Figure 2: Illustration of the Vacant Node 

node crossing point without a Titan encounter will be referred to as the vacant node as 
shown in Fig. 2. Titan’s orbit plane is very close to the ring plane as well as the orbit 
planes of the inner satellites, and by tracking the radius of the vacant node crossing we can 
see if the spacecraft passes through a ring or if it passes near the orbit of another satellite. 

We know the radius of the encounter (rent), which will occur at either the ascending 
node or the descending node. If we substitute (rent) into either Eqn. 6 or Eqn. 7, we arrive 
at the same expression, Eqn. 8, for the radius of the vacant node (rvac) .  This allows us 
to compute the location of the vacant node crossingb without worrying about whether the 
gravity-assist encounter is at the ascending or the descending node. 

For an inclined spacecraft orbit, the encounter will always occur on the line of nodes. 
An encounter will usually occur at the same place in the gravity-assist body’s orbit (as 
in Figure 2). In this case, the spacecraft’s orbit will be resonant with the gravity-assist 
body’s orbit and the time of flight between encounters will be some integer multiple of the 
gravity-assist body’s period (i.e., a transfer with m spacecraft orbits during n gravity-assist 
body orbits will have a period of Tsc = (n/m)Tga). The other case of an inclined transfer 
is that of a backflip orbit” (also called a pi-transfer2t37l1) where an encounter occurs at 
both node crossings. Such transfers are difficult to achieve, and will not be discussed in this 
paper, but analytic expressions for these transfers are available.” 

For a given transfer we will know the spacecraft orbit period, and may solve for the 
semi-major axis (a,,) in Eqn. 8 with Kepler’s Third Law: 

2 
3 

asc = Pcb (2) (9) 

However, for the eccentricity (e,,) in Eqn. 8 we need to look at the encounter with the 
gravity-assist body in more detail. 

bHyperbolic orbits may have only one node crossing. In such cases the vacant node does not exist and 
rvac will be negative in Eqn. 8. 
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With the patched conic assumption, the spacecraft orbit during the flyby will be a 
hyperbola around the gravity-assist body. The velocity of the spacecraft on the hyperbola’s 
asymptotes, the C,, is simply the velocity of the spacecraft (from its orbit around the 
central body) relative to the gravity-assist body: 

(10) 
4 4 + 
v, = vsc - vga 

If we know the v; vector after a flyby we can solve for the spacecraft velocity vector (Csc) 
and hence the orbit after the flyby. Conversely, we may also solve for the orbit before the 
flyby with the approach v&. Each v; when combined with the location of the encounter 
with the gravity-assist body fully determines the spacecraft orbit around the central body. 

To see how the v;$ relates to the orbit around the central body, we construct an inertial 
reference frame using the instantaneous spacecraft postition and velocity relative to the 
central body at the encounter: 

+ 
A rsc 
s1 = - 

r sc  

We may now write the spacecraft velocity as: 

With is, as the inclination of the spacecraft orbit relative to the plane of the gravity-assist 
body’s orbit, we may write via as follows: 

(15) 
4 vga = vga[sin(yga)& + cos(Tga) cos(isc)i2 - cos(Tga) sin(isc)&] 

From Eqn. 10, the v& may be written as: 

Notice that in Eqn. 18, the v,, magnitude for a given orbit is a function of only rent. If 
the gravity-assist body is in a circular orbit, then v,, will be the same for every flyby unless 
a maneuver or another flyby changes re,, or asc. 

Orbital angular momentum gives us a an expression for flight path angle (ysc) at the 
encounter : 

hsc = rencvsc cos(ysc) = Jm 
COS(T5C) = - rencvsc JLZFZ 

(19) 

(20) 
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We see that like us,, cos(ysc) at an encounter depends only on renc and parameters that are 
constant for a given orbit. Since is, won't change between flybys without a maneuver, by 
Eqn. 17, the v, magnitude will also be constant if re,, doesn't change. Since Titan's orbit 
is nearly circular (see Table l), v, magnitude will change little in ballistic Saturnian tours. 

If we can solve Eqn. 17 for cos(ysc) independent of sin(?,,), we may use Eqn. 20 and 
Eqn. 17 to solve for esc as a function of the spacecraft's v, magnitude, inclination, and semi- 
major axis. In order to solve for cos(ysc) in Eqn. 17, we will assume that the gravity-assist 
body is in a circular orbit. This means that ?p = 0 and vga is given by: 

vga = /= 
renc 

Now we may combine Eqn. 18 with Eqn. 17: 

and solve for cos(ys,): 
L-L-32 

cos(ysc) = T@nc Pcb 

We solve for esc from Eqn. 20 and Eqn. 23: 

'e:, = 1 - - 
a s c  

In order to simplify, Eqn. 24, we introduce the following non-dimensional parameter' 
which depends only on v, and asc: 

2 cos(isc) 

This simplifies Eqn. 24 to: - 

(25) 

Finally, substituting Eqn. 26 into Eqn. 8 yields the following expression for the vacant 
node crossing radius: 

(27) 
rvac P -=- 
rent 2 -  P 

Since Titan is in a nearly circular orbit, we will have the same o, throughout a tour 
unless we perform a maneuver." This then allows us to compute the vacant node radius 
as a function of inclination and period from Eqn. 25 and Eqn. 27. 

'This non-dimensional parameter is actually the semi latus rectum divided by T ~ ~ ~ .  
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Allowable Range for p 

Before using Eqn. 27 or Eqn. 26, we need to be aware of constraints on apoapsis and 
periapsis of the spacecraft’s orbit. The spacecraft’s apoapsis must be greater than or equal 
to rent and the periapsis must be less than or equal to rent: 

Using Eqn. 26, we may rewrite the above inequality as: 

The right side of this inequality yields: 

esc 2 1 - P 

and the left side yields: 
esc 2 P - 1 

We may square Eqn. 30 to get a constraint valid when p 5 1 and squaring Eqn. 31 yields 
a constraint valid for p 2 1. Both actions yield the same inequality: 

2 p2 - 2p + 1 I esc 

Using Eqn. 26, this simplifies to: 

The definition of p in Eqn. 25 insures that p will always be positive. Therefore, we may 
divide p from both sides of Eqn. 33 and arrive at the constraint below: 

r e n c  

a S C  

0 5 p - 5 2 - -  (34)  

In the case of a hyperbolic orbit, there may not always be a vacant node crossing. 
Requiring rvac in Eqn. 27 to be positive, we arrive at the following constraint on p for a 
hyperbolic orbit which is more restictive than Eqn. 34: 

RESULTS 

Constrained by Eqn. 34 or Eqn. 35, we may now use Eqn. 27 to design node crossings in a 
gravity-assist tour. All that’s left to do is to check the vacant node crossing for ring debris 
or an encounter with one of Saturn’s other moons. 
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Table 2: Saturn’s Ring System 

Ring or Region Inner Radius ( T i n )  Outer Radius (rout) Half Thickness ( t r ing)  

[kml PSI [kml PSI [kml 
D Ring 66970 1.11 74470 1.23 1 
C Ring 
B Ring 

Cassini Division 
A Ring 
F Ring 

Jan/Ep Debris 
G Ring 

Mimas Debris 
E Ring 

74500 
92000 
1 17400 
122170 
140180 
149600 
165000 
181170 
180000 

1.23 
1.52 
1.95 
2.03 
2.32 
2.48 
2.73 
3.00 
2.98 

92000 
117400 
122170 
136780 
140260 
153300 
176000 
189870 
300000 

1.52 1 
1.95 1 
2.03 - 

2.27 2 
2.32 50 
2.54 900 
2.92 720 
3.15 4800 
4.97 10000 

Rings 
Table 2 shows the Saturn ring sy~tem.’~-’~ Included are possible debris regions near the 
orbits of Mimas and the co-orbital moons, Janus and Epimetheus. The existence of such 
debris fields is uncertain, but these regions should be avoided until the nature of any debris 
is better known. The E Ring is included in Table 2, but is thought to be very low density 
and the Cassini spacecraft will frequently pass through the E Ring, taking precautions to 
protect delicate parts of the spacecraft from dust impacts.14 Although the Cassini Division 
appears to be a gap in the rings, there is evidence of material in this region12 and it may be 
risky to plan a pass through this region. In general, the extent of Saturn’s ring system and 
debris fields is still not well known, and the regions in Table 2 will be much better known 
after the Cassini mission. 

While we don’t want one of the spacecraft’s node crossings to be in the middle of a ring, 
we also don’t want an orbit to pass through a ring before or after a node crossing. To avoid 
the ring debris, we will draw a rectangular torus around a ring, as in Fig. 3, and avoid that 
torus. The simple geometry of the torus is much easier to work with than the complex and 
often poorly understood particle distributions in a ring or debris field. We can guarantee 
that we will avoid the ring debris if we do not pass through the torus around the ring, so 
from now on we will treat the rings as if they are simply rectangular tori. 

Figure 3 shows orbits whose node crossings are outside of a ring yet still pass through 
the ring. To account for such grazing orbits we may treat 
(x,,t) boundaries as functions of inclination (where rin, rout, 

a ring’s inner ( x i n )  and outer 
and tring are given in Table 2): 

If a spacecraft’s node crossing is between xin and r,t then it will pass through the ring. 
But if the node crossing is between rout and x,t, it will only pass through a ring if the 
spacecraft’s periapsis distance is less than rout. 
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Figure 4 is a plot of vacant node radius vs. inclination showing the regions where orbits 
pass through the rings. The darkly shaded regions for each ring show where a spacecraft 
will always pass through a ring (xin 5 r,,, 5 rat), and the lightly shaded regions are where 
a spacecraft will pass through a ring if the periapsis is less than rat (rat < r,,, 5 x,,t). 
Also plotted are dashed lines showing the vacant node crossings for orbits as a function of 
inclination. Each orbit has v, = 5.95 km/s and rent = 19.68 Rs  which corresponds to 
Cassini at the end of its primary mission. Each dashed line is a plot of Eqn. 27 and is 
labeled with the period of the orbits on that line as a resonance of Ti tan  revs : spacecraft 
revs. 

Using Eqn. 27, Eqn. 36, and Eqn. 37, similar plots can be generated for other values of 
v, and r,,,. For a given Saturnian tour, Titan v, and re,, are roughly constant, and one 
plot could be used for an entire tour.d 

Satellite Encounters 
Gravity-assist tours at Saturn have only one gravity-assist body available, Titan. All of 
Saturn’s other moons are not massive enough to provide a useful gravity-assist. Flybys of 
Saturn’s other moons may be designed by finding Titan to Titan transfers which happen 
to pass close to a Finding satellite encounters can be especially difficult when a 
spacecraft is in an inclined orbit, as the spacecraft must cross the radius of a moon’s orbit 
in that moon’s orbit plane. 

If all of Saturn’s moons were in circular coplanar orbits, to see if we cross a satellite’s 
orbit we would simply check if an orbit’s vacant node crossing was equal to the radius of 
a satellite’s orbit. Such an assumption may work for Saturn’s inner moons, but does not 
hold for the outer satellites that have significant eccentricity and inclination. 

Another approach is to construct a ring out of all possible points a satellite’s orbit may 
enter. Such an encounter box can be constructed by treating a satellite’s periapsis like a 
ring’s inner radius and a satellite’s apoapsis as a rings outer radius. Equation 38 gives an 
expression for the half thicknesse of an encounter box: 

tsat  = h t ( 1  + esat) sin(is,t) (38) 
Table 3 gives the encounter boxes for the satellites along with their inclination relative 

to Titan’s orbit (Table 1 gives inclination relative to Saturn’s equator). A spacecraft’s orbit 
passing through an encounter box is a necessary condition for a satellite encounter, but not 
a sufficient condition. In addition, the spacecraft must cross the satellite’s orbit and do so 
when the satellite is in that position in its orbit. However, encounter boxes are still useful 
in that we are able to exclude many orbits that do not pass through an encounter box. 

dBecause of Titan’s eccentricity, v, and re,, do vary by a small amount. However, these quantities vary 
mostly with non-resonant Titan transfers and once a spacecraft is in a sequence of high-inclination resonant 
transfers v, and T , , ~  will vary only due to maneuvers. At the end of the Cassini mission, Cassini is in a very 
high inclination (about 75”) and as such, Fig. 4 could be used to design the Cassini extended mission and 
would only possibly need to be updated after Cassini achieved a low inclination and performed non-resonant 
Titan to Titan transfers. 

“Equation 38 uses the product of a satellite’s apoapsis and its inclination. Apopsis rather than a radius 
90”from a satellite’s node crossing is used because a satellite’s line of apides will precess and using the 
apoapsis in Eqn. 38 avoids having to account for this precession. 
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Figure 3: Orbits Grazing a Ring 

2.5 3 3.5 4 1 1.5 2 
Vacant Node [RS] 

Figure 4: Node Crossings and Rings [vm = 5.95 km/s, re,, = 19.68 Rs] 
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Table 3: Encounter Boxes For Satellites 

rin = asat(1- esat)  ra t  = a s a t ( l +  esat) isat tsat 

[Rsl PSI (Titan orb.) [Rs] 
Mimas 3.01 3.14 1.48" 0.081 

Enceladus 3.94 3.95 0.36" 0.025 
Tet hys 4.88 4.88 0.75" 0.064 
Dione 6.25 6.26 0.34" 0.056 
Rhea 8.73 8.74 0.54" 0.082 
Tit an 19.67 20.84 0.00" 0.000 

Hyperion 24.12 24.98 0.67" 0.291 
Iapetus 57.35 60.71 15.12" 15.838 
Phoebe 179.39 249.98 151.67' 118.646 

Equation 39 and Eqn. 40 give the inner and outer boundaries of an encounter box in a 
spacecraft's orbit plane: 

Figure 5 shows the encounter boxes for the satellites inside of Titan's orbit. The darkly 
shaded regions show where a spacecraft will always pass through an encounter box (xin 5 
r,,, 5 asat(1+eSat)), and the lightly shaded regions are where a spacecraft will pass through 
a box if the periapsis is less than a satellite's apoapsis (asat(l + esat)  < rvac 5 x,t). All of 
the orbits have v, = 5.95 km/s and renc = 19.68 Rs  and each dashed line is labeled with 
a resonance as in Fig. 4. 

Figure 6 shows the encounter boxes of the satellites from Dione out. For the satellites 
outside of Titan's orbit, the spacecraft's apoapsis must be greater than a satellite's periapsiss 
to pass through an encounter box. The darkly shaded regions show where a spacecraft 
will always pass through an encounter box (asat(l - esat) 5 5 xin), and the lightly 
shaded regions are where a spacecraft will pass through a box if the apoapsis is less than a 
satellite's periapsis (xin < rvac 5 asat(l - esat)).  All of the orbits have voo = 5.95 km/s and 
re,, = 19.68 Rs and each dashed line is labeled with a resonance as in Fig. 4 and Fig. 5. 

Phoebe and Iapetus have significant inclination relative to Titan's orbit, resulting in 
large encounter boxes. Phoebe's encounter box is not plotted on Fig. 6 because its encounter 
box is too large to really be useful. Even Iapetus's box is a very large region in which to look 
for an Iapteus encounter. In addition to having a node crossing inside of an encounter box, 
the spacecraft's line of nodes must have the proper orientation for the spacecraft's orbit to 
intersect the orbits of Iapetus and Phoebe, and this is not accounted for in this analysis. 

Once v, is known for a Saturn tour, plots such as Fig. 5 and Fig. 6 may be generated 
to identify orbits on which encounters with other satellites are possible. These orbits may 
then be compared to the satellite ephemeris to see if any satellite encounters do occur. 

Figure 5 and Fig. 6 may be used to plan a sequence of Titan flybys to set up the proper 
spacecraft period and inclination to enter a satellite's encounter box. Satellite encounters 
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are difficult to achieve in high inclination tours, and it is a great advantage to be able 
to plan a sequence of Titan flybys to set up geometry favorable for a satellite encounter. 
Without controlling the vacant node crossing, such encounters can only be found through 
a laborious trial and error p r o ~ e s s . ~  

Periapsis and Apoapsis 
For the lightly shaded regions in Figures 4-6 we need to check the spacecraft’s periapsis or 
apoapsis to find out if it passes through a ring or an encounter box. Since Eqn. 26 gives 
the eccentricity of the spacecraft’s orbit, we may make plots of the spacecraft’s periapsis or 
apoapsis similar to Figures 4-6. 

Figure 7 shows the periapsis radius for different resonances and the outer radius of the 
encounter boxes of the inner satellites as well as rat for the outer rings. Figure 7 allows us 
to check the lightly shaded areas in Fig. 4 and Fig. 5. It turns out that almost every orbit 
shown on Fig. 4 in a lightly shaded area passes through a ring, and almost every orbit on 
Fig. 5 in a lightly shaded area passes through an encounter box. Because z,,~ in Eqn. 37 
and Eqn. 40 approaches infinity as inclination reaches zero, all vacant nodes will be in a 
lightly shaded region for every satellite and every ring as is, nears zero. Figure 7 is then 
useful to exclude orbits in low inclination cases. 

Figure 8 shows the apoapsis of different resonances with the inner radius of the encounter 
boxes for the outer satellites to use with Fig. 6. Resonances of 3:l and higher have apoapses 
above 65 R s  and are not shown on this plot. Figure 8 shows that orbits with resonances 
less than 2:l on Fig. 6 in a lightly shaded area will not reach Iapetus. 

CONCLUSION 

Saturn’s rings are both a target of high scientific interest and a hazard to the spacecraft. 
The methods developed in this paper for controlling the vacant node crossing allow the tour 
designer to get close to the ring system for science while avoiding known debris. Saturn’s 
satellites are also targets of high scientific interest, but are difficult to reach, particularly 
in high inclination phases of the tour. This paper also developed methods for narrowing 
the search for these flybys. By excluding many Titan transfers, the tour designer may now 
focus the search for satellite flybys. 

Tour design at Saturn is restricted by the fact that only Titan is available for meaningful 
gravity assists. However, this constraint also simplifies the tour design problem and allows 
many analytic techniques that would not be possible in a more complicated system. There 
is much more work to be done in developing an analytic theory of tour design, and it is 
hoped that this paper will stimulate interest in this area. It should be possible to predict 
orbits that will encounter other satellites based on the phase angle between Titan and that 
satellite. It is also important to calculate the flyby altitude and b-plane angle needed for 
a given period and inclination change. This would help to predict how many flybys are 
needed to get from a starting state to an orbit that encounters a satellite or has some other 
desired orbit geometry. 
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NOTATION 

Symbols 

Y 
AV 
P 

a 
e 

h 
i 
P 
r' 
r 

W 

f 

rasc 

rdsc 

renc 

T i n  

rout 

RS 
rvac 

'41, '42, '43 

T 
tring 

tsat 

v' 
2, 

2,; 

21, 

flight path angle relative to central body 
change in velocity magnitude 
gravitational parameter ( G M) 
argument of periapsis relative to central body 
semi-major axis relative to central body 
eccentricity relative to central body 
true anomaly relative to central body 
specific orbital angular momentum 
inclination relative to the gravity-assist body's orbit 
non-dimensional orbit parameter defined in Eqn. 25 
displacement from the central body 
magnitude of r' 
radius of ascending node 
radius of descending node 
distance of encounter from central body 
ring inner radius 
ring outer radius 
units of Saturn radii (1 Rs= 60330 km) 
distance of vacant node from central body 
a vector basis tied to the spacecraft's orbit 
orbit period 
ring half thickness 
encounter box half thickness 
velocity vector relative to central body 
magnitude of v' 
v-infinity vector relative to gravity-assist body 
magnitude of w& 

Subscripts 
cb 
ga 
sat 
sc 

quantity is for central body 
quantity is for the gravity-assist body 
quantity is for a natural satellite 
quantity is for the spacecraft 
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