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A b s t r a c t  

We present a design framework €or the implementation for a Low-Density Parity-Check (LDPC) decoders. We 
employed a scalable decoding architecture for a certain class of structured LDPC codes. The codes are designed 
using a small (n, r )  protograph that is replicated 2 times to produce a decoding graph for a (2 x n, 2 x r )  code. 
Using this architecture, we have implementated a decoder for a (4096,2048) LDPC code on a Xilinx Virtex-I1 
2000 FPGA, and achieved decoding speeds of 31 Mbps with 10 fixed iterations. The implemented message- 
passing alogrithm uses an optimized 3-bit non-uniform quantizer that operates with 0.2dB implementation loss 
relative to a floating point decoder. 

1 Introduction 

Error correcting codes are widely used in digital commu- 
nications to allow effectively error-free communications 
to occur over noisy channels. Low-Density-Parity-Check 
(LDPC) codes(l] have recently received a lot of atten- 
tion because of their excellent error-correcting capabil- 
ity and highly parallelizable decoding algorithm. LDPC 
codes have been shown to be able to perform close to 
the Shannon limit[2]. They also can achieve very high 
throughput because of the parallel nature of their de- 
coding algorithms. In the past decade or so, much of 
the research on LDPC codes has focused on the analy- 
sis and improvement of codes under decoding algorithms 
with floating point precision. However, to make LDPC 
codes practical in the real world, the design of an efficient 
hardware architecture is crucial. 

There are several reasons to explore the implementa- 
tion of LDPC code using reconfigurable hardware. First, 
research on constructing a good LDPC code involves em- 
pircial testing of various algorithm parameters and must 
be verified by simulations. Running simulations in soft- 
ware is a slow process. Reconfigurable hardware would 
provide a good way to speed up these simulations. Sec- 
ond, once verified, the same algorithms could be em- 
ployed using the same reconfigurable hardware for proto- 

types. In the future, error correcting system can be easily 
upgraded to the same design with a larger block length 
thus better performance, once a newer and larger FPGA 
is on the market. Third, communication standards in- 
volving the use of capacity approaching codes are still 
evolving. By implementation in reconfigurable hard- 
ware, communication systems would have the flexibility 
to adopt the new standards when they are developed and 
comply with standards in use in different geographic lo- 
cations. Fourth, reconfigurable hardware allows com- 
munication systems to adaptively switch between differ- 
ent codes adjusting to the noise environments, power re- 
quirements, data block lengths, and other variable para- 
meters. 

LDPC codes are often specified by bipartite graphs 
consisting of two kinds of processing nodes, called vari- 
able nodes and check nodes. Each variable node is con- 
nected to channels to receive transmitted bits; each check 
node represents a parity check constraint. Each variable 
nodes is connected to a few check nodes through a set of 
edges. 

In general, the construction of a good LDPC code 
requires a large number of nodes with disorganized in- 
terconnections, which complicates the implementation 
of due to long global interconnects. In this work, we 
propose a scalable architecture of a structured LDPC 
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j t h  check node (see figure 2). 
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Figure 2. Our FPGA decoder architecture 

2.3 Computation Scheduling 

The cornerstone of our hardware architecture is the 
scheduling of message-updates in space and time. One 
iteration consists of a check node phase, followed by a 
variable node phase. In each phase, there are 2 compu- 
tation cycles (See figure 3). 

In the check node phase, all check node modules 
read messages from the edge memory in ascending or- 
der, update the messages, and write their results back to 
the edge memory in ascending order. This computation 
across all T check node units occurs in parallel. 

Control Nodes 

Check Node Phase 
(IWp lhmugh each of Z 

Variable Node Phase 
(loop through each of Z 

oop up o aximum lferations 

Decision Phase 
(loop and outpul each wpy'r 

Figure 3. Decoder control sequence 

In the variable node phase, all variable node modules 
read messages from the edge memory in permuted order, 
update the messages, and write back the edge memory in 
permuted order. The computation across all n variable 
node units also occurs in parallel. The decoding stops at 
the maximum iteration number, or when a stopping rule 
is satisfied. 

Although this work was underway before the Flar- 
ion decoder patent was published, we can now make a 
useful comparison to that architecture. Flarion's de- 
sign operates on all 2 copies of the template LDPC 
graph in parallel and processes the individual nodes 
serially. In this manner, memory and processing can 
be centralized and a Single-Instruction-stream-Multiple- 
Data-stream (SIMD) instruction is used to access all 2 
messages[5]. 

In contrast, our system has multiple decentralized 
processing elements with multiple separate memories. 
All nodes in the template LDPC graph are operated on 
simultaneously in parallel and each of the 2 copies are 
processed serially (see figure 4). 
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4 Structured LDPC Implementa- 

t ion Methodology 
1. Choose a small (n, T )  protograph by some methods 

2. Replicate the protograph 2 times and apply a 
"girth conditioning" algorithm such as Progressive- 
Edge-Growth (PEG)(8] to permute the end points 
of each set of edges to obtain a large (2 x n, 2 x T )  

code graph that does not contain short cycles. 

3. Generate a decoder design by applying the proto- 
graph and the chosen permutations to parameter- 
ized Verilog HDL 

(e.g. 171). 

4. Automatically synthesize, place and route design 

Particular attention is given to the degree distribu- 
tion of the small protograph chosen, as the larger code 
graph will have the same degree distribution. 

using Xilinx XST 

5 Implement at ion 
In order to avoid detrimental arithmetic precision effects 
and the complexity of collating a large number of inputs 

and output a t  each processing unit, implementations of 
LDPC decoders benefit from regular code with a small 
maximum edge degree.[lO] Therefore, for all our prc- 
tographs implemented, we use a regular (3,6) code in 
our LDPC decoder, in which each variable node con- 
nects to three check nodes and each check node connects 
to six variable nodes. 

Our LDPC decoder runs an iterative quantized belief 
propagation algorithm. One iteration consists of a check 
node phase, followed by a variable node phase. 

5.1 Check Node Processing Unit 
In the check node phase, all T check node modules read 
messages from the edge memory in ascending order, u p  
date the messages, and write their results back to the 
edge memory in ascending order. This computation oc- 
curs in parallel across all T check node units. 

The input messages for all T check node modules are 
3-bit. A reconstruction function q5c maps the 3-bit in- 
put message into a %bit unreliability magnitude. 8 bits 
are used to avoid overflowing the sum of the six-input 
adder. After summing up the 6 unreliability magni- 
tudes, the sum is then subtracted from each input unre- 
liability magnitude to give out their respective updated 
8-bit unreliability magnitudes. The updated 8-bit un- 
reliability values, along with the updated sign bits, are 
then quantized into 3-bit by Qc. The results are written 
back to the edge memory. 

Figure 5. Check Node Processing Unit Circuit 
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Xilinx Virtex-I1 2000 FPGAs provide fully synchro- 
nous dual-port Block RAM for memory use. However, 
using Block RAM in our design led to long routes from 
the Block RAMS to the processing logic, which increased 
the maximum delay unaccepted. Instead, we opted 
to use distributed RAM in our LDPC decoder design. 
All n variable node units, r check node units, and edge 
memory units could therefore be placed tightly over the 
FPGA area (See figure 8, 9, 10). As a result, routes 
between the adjacent logic and memory are minimized, 
making it easier for the placement and routing tool to 
meet timing requirements. 

Figure 10. Locations of all distributed memory modules 
over the FPGA area .> . 
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6.1 Speed/Throughput 

We measured the real decoding throughput by the FPGA 
decoder of a (128 x 32,128 x 16) LDPC code at  fixed it- 
eration numbers without sto ' 
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Figure 8. Distributed location of n variable nodes' logic 
over the FPGA area 
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.,%~**. proportional to the number of iterations. The decoder 
latency is 3.18 ns/bit/iteration. The communication 
overhead is 97.1 ns/bit in our tests. Communication 
overhead includes the buffer delay outside decoder mod- 
d e ,  and the time delay writing to and reading from the 
FPGA board. 
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Figure 9. Distributed location of T parity check nodes' 
logic over the FPGA area 
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