
Design and Implementation of a Structured LDPC Decoder on FPGA*

Jason Kwok-San Lee, Benjamin Lee, Jeremy Thorpe,

Kenneth Andrews, Sam Dolinar, Jon Hamkinst

{ kwoklee, leeb, jeremy }@caltech. edu { andrews, Sam, hamkins} @Shannon. j pl .nasa. gov

Jet Propulsion Laboratory, California Institute of Technology

A b s t r a c t

We present a design framework €or the implementation for a Low-Density Parity-Check (LDPC) decoders. We
employed a scalable decoding architecture for a certain class of structured LDPC codes. The codes are designed
using a small (n, r) protograph that is replicated 2 times to produce a decoding graph for a (2 x n, 2 x r) code.
Using this architecture, we have implementated a decoder for a (4096,2048) LDPC code on a Xilinx Virtex-I1
2000 FPGA, and achieved decoding speeds of 31 Mbps with 10 fixed iterations. The implemented message-
passing alogrithm uses an optimized 3-bit non-uniform quantizer that operates with 0.2dB implementation loss
relative to a floating point decoder.

1 Introduction

Error correcting codes are widely used in digital commu-
nications to allow effectively error-free communications
to occur over noisy channels. Low-Density-Parity-Check
(LDPC) codes(l] have recently received a lot of atten-
tion because of their excellent error-correcting capabil-
ity and highly parallelizable decoding algorithm. LDPC
codes have been shown to be able to perform close to
the Shannon limit[2]. They also can achieve very high
throughput because of the parallel nature of their de-
coding algorithms. In the past decade or so, much of
the research on LDPC codes has focused on the analy-
sis and improvement of codes under decoding algorithms
with floating point precision. However, to make LDPC
codes practical in the real world, the design of an efficient
hardware architecture is crucial.

There are several reasons to explore the implementa-
tion of LDPC code using reconfigurable hardware. First,
research on constructing a good LDPC code involves em-
pircial testing of various algorithm parameters and must
be verified by simulations. Running simulations in soft-
ware is a slow process. Reconfigurable hardware would
provide a good way to speed up these simulations. Sec-
ond, once verified, the same algorithms could be em-
ployed using the same reconfigurable hardware for proto-

types. In the future, error correcting system can be easily
upgraded to the same design with a larger block length
thus better performance, once a newer and larger FPGA
is on the market. Third, communication standards in-
volving the use of capacity approaching codes are still
evolving. By implementation in reconfigurable hard-
ware, communication systems would have the flexibility
to adopt the new standards when they are developed and
comply with standards in use in different geographic lo-
cations. Fourth, reconfigurable hardware allows com-
munication systems to adaptively switch between differ-
ent codes adjusting to the noise environments, power re-
quirements, data block lengths, and other variable para-
meters.

LDPC codes are often specified by bipartite graphs
consisting of two kinds of processing nodes, called vari-
able nodes and check nodes. Each variable node is con-
nected to channels to receive transmitted bits; each check
node represents a parity check constraint. Each variable
nodes is connected to a few check nodes through a set of
edges.

In general, the construction of a good LDPC code
requires a large number of nodes with disorganized in-
terconnections, which complicates the implementation
of due to long global interconnects. In this work, we
propose a scalable architecture of a structured LDPC

~~ ~

*The work described was funded by the IND Technology Program and performed at the Jet Propulsion Laboratory, California

t Communications Systems & R.esearch Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.
Institute of Technology, under contract with the National Aeronautics and Space Administration.

1

j t h check node (see figure 2).

FPGA Top Level Block Diagram for
(n.0 x z wpies

check &", check

Figure 2. Our FPGA decoder architecture

2.3 Computation Scheduling

The cornerstone of our hardware architecture is the
scheduling of message-updates in space and time. One
iteration consists of a check node phase, followed by a
variable node phase. In each phase, there are 2 compu-
tation cycles (See figure 3).

In the check node phase, all check node modules
read messages from the edge memory in ascending or-
der, update the messages, and write their results back to
the edge memory in ascending order. This computation
across all T check node units occurs in parallel.

Control Nodes

Check Node Phase
(IWp lhmugh each of Z

Variable Node Phase
(loop through each of Z

oop up o aximum lferations

Decision Phase
(loop and outpul each wpy'r

Figure 3. Decoder control sequence

In the variable node phase, all variable node modules
read messages from the edge memory in permuted order,
update the messages, and write back the edge memory in
permuted order. The computation across all n variable
node units also occurs in parallel. The decoding stops at
the maximum iteration number, or when a stopping rule
is satisfied.

Although this work was underway before the Flar-
ion decoder patent was published, we can now make a
useful comparison to that architecture. Flarion's de-
sign operates on all 2 copies of the template LDPC
graph in parallel and processes the individual nodes
serially. In this manner, memory and processing can
be centralized and a Single-Instruction-stream-Multiple-
Data-stream (SIMD) instruction is used to access all 2
messages[5].

In contrast, our system has multiple decentralized
processing elements with multiple separate memories.
All nodes in the template LDPC graph are operated on
simultaneously in parallel and each of the 2 copies are
processed serially (see figure 4).

3

II -4 I

1

H - 5 5 c < o
-3.3 5 ch < -2.2 1

6 < v 5 1 2
9 < c < 2 6

2.2 < ch 5 3.3

-18 5 v < -12
-9 5 c < -5

-2.2 5 ch < -1.1
-12 5 v < -6
-26 5 c < -9
-1.1 5 ch < 0

0 5 ~ 5 6

I I -1
c < -26

0 5 ch 5 1.1
0 5 ~ 5 6

1.1 < ch 5 2.2

12 < v < 18
5 < c 5 9

0 5 ~ 5 5

4 Structured LDPC Implementa-

t ion Methodology
1. Choose a small (n, T) protograph by some methods

2. Replicate the protograph 2 times and apply a
"girth conditioning" algorithm such as Progressive-
Edge-Growth (PEG)(8] to permute the end points
of each set of edges to obtain a large (2 x n, 2 x T)

code graph that does not contain short cycles.

3. Generate a decoder design by applying the proto-
graph and the chosen permutations to parameter-
ized Verilog HDL

(e.g. 171).

4. Automatically synthesize, place and route design

Particular attention is given to the degree distribu-
tion of the small protograph chosen, as the larger code
graph will have the same degree distribution.

using Xilinx XST

5 Implement at ion
In order to avoid detrimental arithmetic precision effects
and the complexity of collating a large number of inputs

and output a t each processing unit, implementations of
LDPC decoders benefit from regular code with a small
maximum edge degree.[lO] Therefore, for all our prc-
tographs implemented, we use a regular (3,6) code in
our LDPC decoder, in which each variable node con-
nects to three check nodes and each check node connects
to six variable nodes.

Our LDPC decoder runs an iterative quantized belief
propagation algorithm. One iteration consists of a check
node phase, followed by a variable node phase.

5.1 Check Node Processing Unit
In the check node phase, all T check node modules read
messages from the edge memory in ascending order, u p
date the messages, and write their results back to the
edge memory in ascending order. This computation oc-
curs in parallel across all T check node units.

The input messages for all T check node modules are
3-bit. A reconstruction function q5c maps the 3-bit in-
put message into a %bit unreliability magnitude. 8 bits
are used to avoid overflowing the sum of the six-input
adder. After summing up the 6 unreliability magni-
tudes, the sum is then subtracted from each input unre-
liability magnitude to give out their respective updated
8-bit unreliability magnitudes. The updated 8-bit un-
reliability values, along with the updated sign bits, are
then quantized into 3-bit by Qc. The results are written
back to the edge memory.

Figure 5. Check Node Processing Unit Circuit

5

Xilinx Virtex-I1 2000 FPGAs provide fully synchro-
nous dual-port Block RAM for memory use. However,
using Block RAM in our design led to long routes from
the Block RAMS to the processing logic, which increased
the maximum delay unaccepted. Instead, we opted
to use distributed RAM in our LDPC decoder design.
All n variable node units, r check node units, and edge
memory units could therefore be placed tightly over the
FPGA area (See figure 8, 9, 10). As a result, routes
between the adjacent logic and memory are minimized,
making it easier for the placement and routing tool to
meet timing requirements.

Figure 10. Locations of all distributed memory modules
over the FPGA area .> .

1 I . **.
e,., ' . .Ij " " * I *: I ...

* I . 1 . .* I . I . * r * .,.% , 4 . -
I *

... %.l' . a * f 11 I e , -* ..I ,ZL .I 1**, .. ?' 6 Performance . (I.

r v r . .
* *. , s x . I % A *

. I '.'
. I * ' . 1 :: <."::: . I . e - 3

6.1 Speed/Throughput

We measured the real decoding throughput by the FPGA
decoder of a (128 x 32,128 x 16) LDPC code at fixed it-
eration numbers without sto '

.t"'

Figure 8. Distributed location of n variable nodes' logic
over the FPGA area

" .
"23 . ' , .

"*,. 1 1111. I

1 * * *
* I *

I . * , . . f t ' 1

1 (" b . ::: * + , ., * * e . ,... " 111,

.. '. '" .=. 6 2'" : ' .,:* * ?

i r . *
L . + * * 11111.1

1, **ne . * I) I

. ' * * e *

e;,
8 ', .' :
' * $ * ;

d . I '"3-
> * * -l .il

I* . ", *: :t a , *, 8 .
*,.I X I * .* t .. + ; e

(I. .*.*' r l . "
A?!:: , *

:;; ;
. -.,

S G , I)

* I ..' The measured delay consists of communication over-
head and decoder latency, in which decoder latency is

.,%~**. proportional to the number of iterations. The decoder
latency is 3.18 ns/bit/iteration. The communication
overhead is 97.1 ns/bit in our tests. Communication
overhead includes the buffer delay outside decoder mod-
d e , and the time delay writing to and reading from the
FPGA board.

+ I * .

,.* .*%,* "ill.

* , I .
g;::

* ' .
. I * Z I It''

* a 1 I .
* * I 1(~

Figure 9. Distributed location of T parity check nodes'
logic over the FPGA area

7

J . Thorpe "Low-Density Parity-Check (LDPC)
Codes Constructed from Protographs", IPN
Progress Reports 42-154, April-June 2003

T. Richardson, "Methods and Apparatus for Decod-
ing LDPC Codes," United States Patent No.: US
6,633,856 B2, Oct. 14, 2003.

H. Zhong and T. Zhong, "Design of VLSI
Implementation-Oriented LDPC Codes," IEEE 1'1
Semiannual Vehicular Technology Conference

PI

submitted to 2004 IEEE International Symposium
on Information Theory.

X. Hu, E. Eleftheriou, and D. Arnold, "Progressive
edge-growth Tanner graphs, 'I Global Telecommuni-
cations Conference, 2001. GLOBECOM '01. IEEE
, Volume: 2 , 25-29 Nov. 2001

J. Thorpe I' Low-Complexity Approximations to Be
lief Propagation for LDPC Codes," Unpublished.

(VTC), Oct. 2003

J . Thorpe, K, Andrews, S. Dolinu, "Methodolo&s
for Designing LDPC Codes Using Protographs,"

[lo] E. Yeo, B.Nikolic, and V. Anantharam, "Itera-
tive Decoder Architectures," Communications Mag-
azine, IEEE , Volume: 41 , Issue: 8 , Aug. 2003.

9

