
Reducing Software Security Risk through an Integrated 
Approach Research Initiative 

Model Based Verification of the 
Secure Socket Layer (SSL) Protocol 

John D. Powell 



1 . Introduction ............................................................................................................... 1 
1.1. The RSSR Research Project ................................................................................ 1 
1.2. MBV using Model Checking and the FMF ............................................................. 2 

2 . The FMF Verification Methodology and Rationale .............................................. 4 
2.1. Propagation of Verification Results ......................................................................... 6 

2.1 . 1. Verification Values ........................................................................................... 6 
2.1.2. Confidence Ratings ........................................................................................... 7 

2.2. Integrating FMF with other RSSR Instruments ....................................................... 8 
3 . 
4 . Results of SSL Communication Protocol Verification ........................................ 21 
5 . Conclusion ............................................................................................................... 22 
References ........................................................................................................................ 24 
Appendix A: Promela Code Excerpts ........................................................................... 25 
Appendix B: SPIN Output for Verification Results .................................................... 37 

Modeling the SSL Communication Protocol .......................................................... 9 



1. Introduction 
This document discusses the verification of the Secure Socket Layer (SSL) 
communication protocol as a demonstration of the Model Based Verification (MBV) 
portion of the verification instrument set being developed under the Reducing Software 
Security Risk (RSSR) Trough an Integrated Approach research initiative. Code Q of the 
National Aeronautics and Space Administration (NASA) hnds this project. The NASA 
Goddard Independent Verification and Validation (IV&V) facility manages this research 
program at the NASA agency level and the Assurance Technology Program Office 
(ATPO) manages the research locally at the Jet Propulsion Laboratory (California 
institute of Technology) where the research is being carried out. 

1.1. The RSSR Research Project 
The National Aeronautics and Space Administration (NASA) has tens of thousands of 
networked computer systems and applications. Software Security is a major concern due 
to the risk to both controlled and non-controlled systems fiom potential lost or corrupted 
data, theft of information, and unavailability of systems, especially mission critical 
systems. The cost to NASA if mission critical systems were compromised, would be 
enormous if these systems were brought down or erroneous data sent to a spacecraft. The 
RSSR research examines formal verification of information technology (IT) security of 
network aware software and systems through the creation of a security assessment 
instrument for the software development and maintenance life cycle. [ 1,2,3,4,5,6] The 
network security assessment instrument is composed of 5 parts: 

1. A Vulnerability Matrix 
2. 
3. 
4. A Model Based Verification (MBV) Instrument incorporating a Flexible 

5. 

Additional Security Assessment Tools (SATs) 
A Property Based Testing (PBT) Instrument, and 

Modeling Framework (FMF) 
A Software Security Checklist (SSC) 

The vulnerability matrix is part of the UC Davis DOVES database containing 
vulnerability descriptions and the code used to exploit them. This information is used to 
extract properties and requirements that express potential network vulnerabilities. The 
PBT tool and the FMF can then utilize these properties. The SATs are a collection of 
tools available on the Internet that can be used to test for potential weaknesses of 
software code. This list includes a description of each of the tools and their uses. It will 
be updated as additional tools become available. The PBT tool performs formal 
verification of properties, including those obtained from the vulnerability matrix, at the 
code level. Properties are verified by slicing the code in search of the specific 
vulnerability properties in question. Like the PBT tool, the FMF formally verifies 
properties over the system. However, the FMF performs this action early in the software 
lifecycle at the abstract level when code may or may not yet exist. The SSC will provide 
software code developers with an instrument for writing secure code for network aware 
applications, such as the use of network ports, protocols, authentication, privileges, etc.. . 

1 



It will also ensure that released software does not provide backdoors into or information 
about an organization’s systems or networks. 

1.2. MBV using Model Checking and the FMF 
Model Based Verification makes use of discrete finite models to verify compliance of the 
modeled system to desired properties. While the FMF is a generic approach to modeling, 
the specific properties addressed in this document focus on software and network security 
properties pertaining to the SSL communication protocol. Network security properties 
often focus on characteristics that are manifested though the operation of multiple 
software components and systems operating concurrently with or without an attacking 
process. The concurrent nature of the systems results in an operational space that is too 
large to verify system properties effectively through traditional testing of the 
implementation. Further, vulnerabilities introduced in the early phases of the 
development lifecycle are costly to remove in later phases when an implementation is 
being tested. This results in the addition of cumbersome workarounds and “patches” to 
repair the software system which themselves could introduce new vulnerabilities. MBV 
offers the opportunity to perform verification of properties early in the life cycle, 
providing a clearer understanding of the vulnerability issues within the system during the 
design phase before an implementation exists. 

The MBV technique demonstrated and reported on in this document involves Model 
Checking (MC). Model checkers automatically explore all paths in a finite state space 
from a given start state in a computational tree. The objective is to verify system 
properties over all possible scenarios within a model. Model checkers differ from more 
traditional heavyweight formal techniques in that model checkers are operational, as 
opposed to deductive. Deductive approaches, while offering a higher level of 
completeness and more resilience in the face of larger systems, are difficult to apply and 
require a great deal of expertise. 

Model checkers provide counter examples when properties are violated. The counter 
examples may be used to determine the cause of the property violation and used as 
representative traces for test case generation. [8,9] Their goal is oriented toward finding 
errors as opposed to proving correctness since the model is an abstraction of the actual 
system. Where errors are found in the early lifecycle, sample test specifications can be 
preserved for use by the PBT to provide traceability verification. 

MBV techniques, such as MC, are not without drawbacks. Among them is the inability 
to model a system with a high degree of fidelity in a timely manner while the system 
evolves. This is particularly problematic in the earliest stage of development such as 
concept, requirements and high-level design when the system definition is most volatile. 
MC’s lack of agility limits an analyst’s ability to maintain an up-to-date model and 
minimize the latency between the introduction of errors and their discovery. 

2 



X 

X 

Process P1 process P2 

Figure 1 : Concurrent Processes 

.. 

Processors P 1 ,  P2 

Figure 2: Interleaving Concurrent 

A limitation specific to MC is the state space explosion problem. [lo] Similar to the 
growth of the operational space mentioned above, the state space that a model checker 
must search to verify properties grows at an exponential rate as the model becomes more 
detailed. As shown in figures 1 through 3 the state space grows at a rate of mn where m is 
the range of possible values a variable may assume and n is the number of variables in 
the model. Despite the use of modeling techniques such as abstraction and homomorphic 
reduction, it is infeasible to verify many software systems in their entirety though model 
checking beyond those that are either complex and very small or moderate in size and 
very simplistic. 

I Figure 3: State Space 

An innovative verification approach that employs MC as its core technology is offered as 
a means to bring software security issues under formal control early in the life cycle 
while mitigating the drawbacks discussed above. The FMF seeks to address the problem 
formal verification of a larger system by a divide and conquer approach. First, verifying a 
property over portions of a software system, then incrementally inferring the results over 
larger subsets of the entire system. As such the FMF is a: 

System for building models in a component based manner to cope with system 
evolution in a timely manner. 

0 

3 



0 Compositional verification approach to delay the effects of state space explosion 
and allow property verification results to be examined with respect to larger, 
complex models. 

Modeling in a component-based manner involves the building of a series of small 
models, which will later be strategically combined for system verification purposes. This 
correlates the modeling hnction with modern software engineering and architecture 
practices whereby a system is divided into major parts, and subsequently into smaller 
detailed parts, and then integrated to build up a software system. An initial series of 
simple components can be built when few operational specifics are known about the 
system. However, these components can be combined and verified for consistency with 
properties of interest such as software security properties. 

The compositional verification approach used in the FMF seeks to verify properties over 
individual model components and then over strategic combinations of them. The goals of 
this approach are to: 

Infer verification results over systems that are otherwise too large and complex 
for model checking from results of strategic subsets (combinations) while 
minimizing false reports of defects. 

0 Retain verification results from individual components and component 
combinations to increase the efficiency of subsequent verification attempts in 
light of modifications to a component. 

0 

2. The FMF Verification Methodology and Rationale 
The FMF approach’s verification strategy for systems, whose entire model is too large for 
MC, is first to verify the property in question (p) over each individual component 
individually. Next, p is verified over unique component combinations of 2 or more 
components that are built up until no unique component combinations, whose state space 
may be model checked remain. During this combination and verification process, the 
relationships between the combinations are preserved such that for two arbitrary 
combinations x and y where x is a subset of y and the cardinality of x equals the 
cardinality of y minus 1, x will be considered the child of y in a tree structure of model 
checked model combinations. (See Figure 3) The result of maintaining these relationships 
is the generation of a tree of verified model component combinations (MCCs) with 
multiple root nodes. This tree is referred to as the Model Component Combination Tree 
(MCCT) The tree’s leaf nodes consist of single verified components, the parents of leaf 
nodes consist of a combination of 2 components and their parents consist of a 
combination of 3 components etc.. . (See Figure 4) 

At some threshold, determined by the amount of available memory present on the 
verification-computing platform, the state space of MCCs becomes too large for state of 
the art MC. The combinations beyond this threshold may be systematically computed but 
not model checked and is referred to as the implicit portion of the MCCT. The portion of 
the MCCs that can be verified via MC is referred to as the explicit or verified portion of 
the MCCT. 

4 



A root node in the verified portion of the MCCT is implicitly connected to parents 
that represent MCCs whose state space size prohibits direct model checking due to 
memory constraints. The only exception to this assumption is when the state space of the 
entire system model is small enough to be model checked on the platform in a traditional 
way. However, the FMF approach offers benefits to modeling beyond MC state space 
explosion and can handle verification of this case as a trivial case where there will exist 
only one root node which represents the entire system and produces the traditional MC 
result over the entire system. 

The implicit parent of an explicit root node follows the same relationship rules 
that explicit nodes follow with regard to makeup and cardinality. (See this section above) 
An explicit “root” node is a subset of its implicit parent and contains exactly one less 
model component in its combination as illustrated by the shaded boxes in Figure 4. 
Additionally each parent (implicit and explicit) has a number of children equal to the 
number of components in its combination. Thus, the entire implicit portion of the MCCT 
can be systematically generated and probabilistic verification statements made. 

In addition to supporting the FMF’s compositional verification approach the 
MCCT allows for partial re-verification in light of system model changes. As the system 
is evolves, related model components are updated to reflect changes. The modular style 
of modeling in components results in a localization of the effects of updating a model 
component. Since the relationships between components and MCCs and past verification 
results of model components and MCCs are maintained, only the modified component 
and MCCs in which it participates need be re-verified. This represents a significant 
savings in terms of computational efficiency during subsequent (re-)verification 
executions. 

Explicit 

Figure 4: MCCT Verification Value Assignment and Propagation 

5 



2.1. Propagation of Verification Results 

Each node (MCC) in the MCCT is a vehicle for retention of knowledge pertaining to the 
verification of the MCC represented therein. Each node carries two primary pieces of 
knowledge directly pertaining to verification. 

A verification value ranging from 0 to 2 that describes whether the property in 
question holds over the associated MCC. (See Figure 4) 
A confidence rating ranges from 0 to 1 that describes the probability that the 
verification value produced is correct. 

0 

0 

A verification value of 0 indicates that the property decidedly does not hold. In terms of 
network security properties for software, a property violation represents the discovery of 
a network security vulnerability. The indication as the verification value progresses from 
0 towards 1 is that the predictability of the property not holding is diminishing towards 
undecidability and is completely undecidable at a value of one. As the verification value 
moves from 1 to 2 the predictability that the property holds is increasing with a maximal 
predisposition that the property holds over the MCC when the verification value is 2. The 
verification value will always be 0 or 2 in the explicit or verified portion of the MCCT 
because the MCCs are model checkable and thus a definitive verification result is 
obtained for that MCC. As verification values are derived for MCCs or nodes in the 
implicit portion of the MCCT the degree to which a property is believed to hold /not-hold 
over a given MCC begins to vary between 0 and 2 because no direct MC results are 
available. It bears noting here that the verification value in no way expresses confidence 
in the verification result expressed by the verification value. Thus, a Verification Value 
of 1 means that information across the various model components in a MCC is in 
conflict. A separate confidence rating is used to express the degree of confidence that the 
heuristics have correctly identified conflicts. (See Table 1 in Section 2.1.2) Verification 
Values in the implicit portion of the MCCT are calculated by averaging the Verification 
values of its children. (See Figure 4) In the explicit portion the MCCT, the verification 
values of a node is not heuristically derived from its children because the application of 
MC to the parent’s MCC is a definitive verification answer. As can be seen in Figure 4 it 
is possible to systematically propagate verification values over the full set of model 
components and thus the entire system model. 

2.1 .I. Verification Values 
Verification values assist in determining early lifecycle repairs and assurances for a 
system before software security vulnerabilities propagate and become exponentially more 
expensive to repair. In relation to the MCCT these activities are guided by trying to 
maximize and/or preserve Verification Values across the MCCT. For example, the small 
system depicted in Figure 4 indicates that model component A (VVA) violates the 
property but the violation is mitigated individually by both model components B (VV,) 
and C (VVC). However, B (VV,) and C (VVc) taken together without benefit of any 
other model component violate the property. Further, even though together they violate 
the property in question in combination, individually each model component (B and C) 
satisfies it as well as correcting the property’s violation in A (VVA). Consider that this set 

6 



of component represents the system at the early design or architecture stage of the 
development life cycle. Several important questions can be prioritized and addressed. 
First, what interaction between the behaviors represented by model components B and C 
causes the property to be violated? Identification of this anomaly guides the network 
security profession or software developer toward the root cause of the vulnerability. 
Secondly, does components B andor C mitigate the property violation found in 
component A because they are explicitly required to do so or is it coincidental? The 
documentation must either reflect this reliance on B and C in the form of new / existing 
requirements or action must be taken to isolate and repair the transient vulnerability. 

Conf. 
Rating 

1 .o 
0.99-0.7 
0.69-0.00 
1 .o 
0.99-0.7 

Similar steps may be taken to address the verification value of 0 in MCC VVcD. It 
becomes apparent from this very small example that verification values in the FMF 
approach generates numerous interrelated questions. However, this is considered a 
strength of the FMF approach because the questions and issues are brought out very early 
in the lifecycle for consideration. Further, as early decisions are made and captured, 
efficient localized updates of the system model are supported through the modular nature 
of the model components in a very agile manner. Issues affected by subsequent changes 
are automatically revisited though the required localized re-verification of affected 
combinations. This last feature of the approach is considered a failsafe and not a 
substitute for good practices such as documentation of decisions and emergent 
requirements. 

Verif. Description 
Value 
2.0 
2.0 
2.0 
0.0 
0.0 

Highest confidence of No Property Violation 
Reasonably High Confidence of No Property Violation 
Questionable to no confidence of No Property Violation 
Highest confidence of Property Violation 
Reasonably high confidence of Property Violation 

0.69-0.00 
0.99-0.7 

0.0 
1.0 

Questionable to no confidence of Property Violation 
Reasonably High confidence Property (Non-) Violation cannot be 

0.69-0.0 

2.1.2. Confidence Ratings 
Confidence ratings for MCCs reflect the degree to which the heuristics of the FMF 
approach believe that the corresponding verification value correctly decides the result of 
the property verification over the MCC. It bears noting here that the confidence rating 
does not serve to improve decideability. Rather it serves to project the confidence in the 
decision once it is made. For example, when the verification value is at or very near 1 a 
high confidence rating means that the approach is very sure that the verification answer 
cannot be derived fiom the information available. Conversely, a low confidence rating 

Predicted 
1.0 Questionable to Low confidence Property (Non-) Violation 

cannot be Predicted. Non-Uniform Component Resolution may 
produce productive predictions 

7 



when the verification value is (near) 1 means that insufficient information to decide the 
verification is available to decide the verification answer but existing information 
conflicts to a large degree. Reasoning about confidence ratings over verification values 
provides useful distinctions that may be used to guide future action. (See Table 1) such as 
identifying of a portion of the system that is likely to be problematic or under specified. 

2.2. Integrating FMF with the other RSSR Instruments 

The individual parts of the Security Assessment Instrument can be used separately or in 
combination (See Figure 5). When used in combination they provide the following 
additional benefits of: 

0 

0 

0 

Reduced rework to identify security properties. 
Increased confidence in the system through verification at multiple times during 
the development and maintenance lifecycle. 
Use of one tool to verify the input and output of other tools in the network 
security instrument. 
Finding additional network security attacks yet to be seen in the wild (attacks that 
have not yet been seen outside of a laboratory environment) and test for their 
viability and severity. 

V m a t r i x  

A t t a c k s  n o t  in  t h e  w i l d  

\ 
; '\ 

/ 
/ \ 

/ \ 
8 P B T  / 

\ 
I 1 
I a 

8 I 
I I 

I 
I / 
I I 

I 
I 
I 
I 
I 
I 

/ 

0 
I I 

I 
I 

/ M B V  

D i s c o v e r e d  a t t a c k s  n o t  b e e n  s e e n  in t h e  w i l d  ------ 
K n o w n  a t t a c k s  f o r  V m  a t r i x  / P B T  L i b a r i e s  

F i g u r e  5 

8 



In the network security arena an integrated approach, which includes the FMF as a 
model-based verification element, for assessing security vulnerabilities is graphically 
represented by the diagram in Figure 5. The other parts of the Security Assessment 
Instrument are PBT and the VMatrix. PBT is an approach that allows the analyst to 
systematically test an implementation for adherence to various properties by making use 
of a support tool called the Tester’s Assistant (TA). [1,2,5,6] First, the property is 
expressed in a form that the TA accepts as input. Then, an analyst uses the PBT to 
systematically insert assertions that are pertinent to the property into an implementation 
and exercises the implementation. The objective is to discover traces through the 
implementation that produce a non-conforming scenario. The Vmatrix, examines 
vulnerabilities, exposures and the methods used to exploit them. Vulnerabilities and 
exposures are listed along with their Common Vulnerabilities and Exposures (CVE) 
listing. [2] The VMatrix includes: 

0 

0 

0 

0 

A brief summary and a description of the vulnerability or exposure. 
The affected software or operating system. 
The means necessary to detect the vulnerability or exposure and the fix or method 
for protecting against the exploit. 
Catalogue information, keywords, and other related information as available, 
regarding the vulnerability or exposure. 

In addition to developing an abstract model of a system and performing MC verification, 
properties of interest must be defined. The identification of specific system critical 
properties that warrant formal verification is a non-trivial task. Integration of the FMF 
with the VMatrix addresses this problem for the network security arena. The VMatrix 
[ 1,2] provides a searchable knowledgebase from which properties may be extrapolated 
for use with the FMF in the role of a MC function within the instrument. This is 
represented in figure 5 by the arrow originating from the VMatrix and ending at the MBV 
element of the instrument. This step in the integrated approach involves a translation of 
the property from the VMatrix format to linear temporal logic properties. 

This knowledgebase also accommodates the discovery and recording of new network 
security attacks not yet seen in the wild and that may be discovered through MC 
techniques. The network security instrument also provides a Property based testing tool 
[ 1,2,3] that verifies properties against the actual implementation of a software system. 
These properties are also extracted from the VMatrix. Used with the FMF, PBT can 
provide verification of a system implementation’s fidelity to the model(s) of early 
lifecycle artifacts (Requirements and Designs). 

3. Modeling the SSL Communication Protocol 
The modeling of the portion of the SSL communication protocol of interest for this study 
did not exhaust memory constraints on the test platform. Therefore, heuristic propagation 
of results from the explicit portion of the MCCT to the implicit portion was not 
necessary. That is to say that the current portion of the system functionality that has been 
modeled resides wholly in the explicit portion of the MCCT because it can be model 
checked as a whole. However, the component based modeling approach is still useful in 

9 



that it can demonstrate which combinations of features with in the SSL communication 
protocol cope with attacks and which combinations are defeated. Further, the component 
architecture for the verification effort allows for easier extension of the model to study 
new attacks and additional SSL functionality and varying combinations thereof. 

Current 
State 

The components are expressed in this document in the form of state charts that are 
subsequently modeled in the Promela modeling language for use with the SPIN model 
checker. The state charts are displayed within the text as each component and component 
combination is discussed. The Promela code excerpts that correspond to the state charts a 
re located in Appendix A and are indexed as follows: 

New State: 
Effect of 

Transition 
Event / Side-Effect 

State Chart n from text corresponds to Promela listings n.1, n.2, n.3 
... in Appendix A 

The notation used for transitions within the state charts in this document is read as 
follows (Also See Figure 6 )  

0 

0 

The current state represents the state of the system before a transition is executed 
The effect of reaching a new state is considered to occur when the new state is 
reached, i.e. after any side effects of the transition 
Labels on the transition line are of the form WY where X is an event that must 
occur for the transition to execute and Y is a side effect of executing the transition 
apart from the new state definition. Note that X and/or Y may be null. A null 
event means the transition may be taken at any time provided the software system 
is in the “Current State” 

Figure 6: Example State Transition 

Before describing each major component in detail, it useful to view the overall MCCT 
structure of the components as they are built up. Some leaf nodes will be shone to be 
trivial with regard to property verification. Further, it will become obvious that some 
MCCs will be illogical. For example, a combination that contains attacks but now 
communicating entities on which to perpetrate the attack is an illogical combination. 
These illogical combinations are pruned from the MCCT. The trivial leaf nodes are left in 
place to provide foundation for the more complex elements formed by their combination. 
The MCCT of the functionality model in this study is illustrated in Figure 7. 

10 



Essentially Figure 7 shows how components can be mixed and matched to verify a 
correctness property over multiple variations of a system’s behavior without building a 
model for each variation. While a model could be built that encompasses all possible 
behaviors simultaneously, it can be counter productive to effective system analysis. First, 
combining behaviors in a concurrent manner that do not reasonably co-exist in a system 
will produce an overwhelming number of false positives. This will flood the analyst with 
so much data to review that the timeliness of actual system violation will be heavily 
compromised. Next, upon finding a valid violation of a system’s correctness property / 
properties amid the false positives, the counterexample will often be so convoluted by 
irrelevant interim model transitions that isolating and recommending corrective action 
becomes a long and tedious task of analysis in and of itself. When the model is separated 
into variations through the use of MCCs from the MCCT critical knowledge can be 
extracted from the pattern of (non-) violations over the model variations as will be seen in 
the verification results section of this research. This approach often provides a basis for 
determining critical hctionality with regard to property violation and thus isolation of 
problem areas for corrective actions. Finally, in a open system, such as models of 
software security protocols and environments, an all encompassing model will unduly 
stress the limits of the test platform’s memory constraints due to excessive state space 
explosion. 

11 



SSL Secret 
Functionality 

/ 
/ 

SSL Certificate 
Functionality 

I 

/ 
/ 

Client 
inctionality 

Communicating Man in Middle Replay Attack DoS Attack 
Entity I I F u z z : h y  I I Attack 

I I I  I I  I I  

Figure 7: MCCT for SSL Communication Protocol Verification 
After trivial and illogical MCCs have been pruned for illustrative purposes 

Gray boxes represent MCCs that apply to the correctness properties defined in this study 

12 



The first software component to be modeled is simple communication without an 
guarantee of delivery (See Figure 8). Multiple copies of this component are run together 
in a model component combination along with a component that provides the 
environmental function of transporting message. A simple event queue was used as the 
environmental component in the model component combination 

I 1 Ready 
I 

Msg-Received/NULL 

Responding Contacting 

Figure 8: Simple Communication Entity 

Next, the model of a communicating component is further defined in two different ways. 
This produced two different components - a communicating client (See Figure 9) and a 
communicating server (See Figure lo), which have no security characteristics. The main 
differentiation is that: 

A client component initiates communication with a server component 
The server component responds to the incoming communication but cannot 
initiate communication. 

After initial contact is made and an initial response is returned, communication between 
the two components proceed as a simple communication illustrated in Figure 8. 
Under the SSL protocol a communicating entity may be either a client or a server in a 
given communication scenario. The communicating entity that makes first contact 
automatically becomes a client and the entity that it contacts automatically becomes the 
server under the SSL protocol. Further, a communicating entity may serve as a client and 
a server simultaneously if more than one communication scenario is occurring 
concurrently. Therefore, the first two basic model components that must be combined for 
model checking is the Client component and the Server component (See Figures 9 and 10 
respectively. This combined model component referred to as a “Complete” 
Communicating Entity in this document. To combine these two model components the 
union of the two state charts is constructed. (See Figure 1 1) Multiple instances of this will 
be model checked together and in conjunction with Client, Server and Simple 
Communicating Entities and the environment event queue component. 

13 



Ready-1 NULWInit Msg Sent , Init Contact 

eceived/NULL 
I I Ready-2 1 I 

Msg-Received/NULL 

NULL/NULL 

Responding Contacting Responding Contacting 

Figure 9: Client Communication Entity 

Ready-1 Init Msg RecievedNULL 

Ready - 2 

Msg-Received/NULL 

NULL/NULL 

Responding Contacting 

~ ~~ 

Figure 10: Server Communication Entity 

14 



Init-Msg-Recieved/NULL 

Abort/NULL 
Init Response 

Figure 11: Complete Communication Entity 

NULL/Init - Msg - Sent 

Init Contact 

ceived/NULL 

A “Handshake” between two communicating entities is the initialization protocol that 
they use to set them up for a specific type of ongoing communication. The Complete 
Communication Entity is combined with the establishment of a secret during the initial 
handshake between client and server for use in future encryption as per the SSL 
communication protocol. (See Figure 12) There is no use of certificates to authenticate a 
communicating entity’s identity at this stage. This entity is the first MCC that 
substantially contains the characteristics of SSL style communication between two 
computer systems over a network. This MCC is an abstract representation of public key 
encryption as used within the SSL communication protocol with timeouts and invalid 
responses represented by transitions back to the “Readyl” state. In order to make this 
abstract representation efficient in terms of verifiability the encryption keys can be 
readily calculated. However, we are assuming that any attack is unable to break 
encryptions by brute force and can only decrypt encrypted messages if it obtained the 
required secret. As will be shown in the next section, the attacks are crafted to ignore the 
ability to predetermine the public key encryption secrets as per the stated assumption. 
Modeling of full-scale encryption would, by definition of the purpose of encryption, 
produce a state space that is far too large to search, even by automated means such as the 
SPIN model checker being used in this verification effort. 

Responding 

15 

Contacting 



Init Response 
Secret=Cpid,CID) 

Abort/NULL 

A 

Init Contact 

\---" 
NULL/Msg-Sent-, 
(Secret(X,Y), Msg) 

NULL/NULL 

Responding Contacting 

Figure 12: SSL Communication Entity - No ID Check 

The final MCC behavior that does not include an attack is an SSL compliant entity that 
uses certificates and trust lists to confirm the identity of each SSL communication entity. 
(See Figure 13) A trust list is simply an internal list of outside communicating entities 
maintained by a given communicating entity of interest. The list denotes those outside 
entities with which the entity of interest will allow the exchange of secure information. 
This is the most secure entity modeled in this research. Thus, any modeled attack that 
defeats an entity of this type will be cause for investigating a flaw in the SSL protocol. 

16 



Init Trust List F 
r? Ready-1 

Client-Msg-Rec+ID/CID=ID 7- 
Init Response 1 Abort/NULL 

Secret=Cpid,CID) 

NUL Whit-Rsp-Sent 
+Secret(X,Y) 

No 

I 
L 

Msg-Sent+qid 

Init Contact 

Init-Rsp-Received j 
Secret(X,Y)/NULL 

No 

I 

Msg-Received + 
(Secret(X,Y), NULLh4sg-Sent+ 

(Secret(X,Y), Msg) 

NULL/NULL 

Responding Contacting 

Figure 13: SSL Communication Entity with Certificates 

17 



The remaining model components provide three attack behaviors: 
0 

0 

0 

Man in the middle attack (See Figure 14) 
Replay attack (See Figure 15) 
Denial of Service (DoS) attack (See figure 16) 

Each attack will be combined with the three significant communication MCCs, which are 
the Complete Communication Entities, the SSL entities without certificates and the SSL 
entities that use certificates. These form nine MCCs that must be verified with respect to 
the correctness properties defined for the system (See next section) 

The man in the middle attack intercepts a message coming from one entity and then 
attempts to pass it on to the intended receiving entity undetected. 

Null / Null 

Comm Entity Msg Sent / 
Attack Receive Msg 

Intercepted TI 
Null / Attack Stores Msg Info 

Msg Read u 
Null / Sent Msg to Receiving 

Comm Entity ,* Forwarded 

Figure 14: Man-in-the-Middle Attack 

18 



The replay attack (See Figure 15) attempts to intercept a message and forward it on 
undetected much the same way that the Man in the Middle attack does. In addition, the 
replay attack stores the message and replays it at a later time to disrupt secure 
communications. This disruption can take on one of two forms: 

0 

0 

Produce an invalid sequence during the handshake repeatedly to prohibit secure 
communication from being established. 
Intervene with a message that will confuse secure communications and result in 
the securely communicating entities revealing their encryption secret(s). 

Null I Null 

Start I 
Comm Entity Msg Sent I 
Attack Receive Msg 

I Intercepted I 

Null I Sent Msg to Receiving 
Comm Entity 

Forwarded 

Null I Sent Msg to Receiving 
Comm Entity 

t -I Replayed Msg 1 

Figure 15: Replay Attack 

19 



The DoS attack (See figure 16) simply attempts to flood the communication channels 
with spurious message that will prohibit communication entities from establishing or 
maintaining secure communication. Thus the authorized entities will denied access to 
secure communication facilities. 

I 
Dummy 

Message to 
any Comm 

Entity 

Figure 16: Denial of Service (DoS) Attack 

20 



4. Results of SSL Communication Protocol 
Verification 

Each communicating entity 
will eventually achieve and 
execute the exchange of secure 
communication 

The four correctness properties of interest in this verification effort, stated as 
requirements, are as follows: 

DoS 
attack 

Man in the 

Attack 

Replay No Attack Middle Attack 

1. 

2. 

3 .  

4. 

Signed SSL Entities 
(Certificates) 
Unsigned SSL Entities 
(No Certificates) 

Non-SSL Client Server Entities 

The SSL secure communication shall initialize eventually unless less an attack 
has successfully inserted itself in such a manner that the resulting secure 
communication will be compromised. 

Violation Violation Violation 

Violation Violation 

Violation Violation 

No 
Violation 

No No 
Violation Violation 

No No 
Violation Violation 

Once secure communication is establishhed secure contacts and responses will 
always be reaced. 

A secure message that has been intercepted shall be detected and not accepted by 
the SSL communicating recipient of the secure message. 

Under the rules for attacks an attack may only read messages that are either 
unsecured or secured messages if the secret has previously been captured. 
Securely communicating entities shall not reveal their secret even during the 
handshake initialization 

Figure 17 shows a table of verification results over nine variations of the system being 
model checked. The property states, in terms of the model variables (See excepts in 
Appendix A) that the state of both of the given entities with eventually reach a state such 
that they are communicating securely with one another in light of the given attack. The 
table provides verification for properties 1 though 3. 

21 



The correctness property stated in Figure 17 is expressed as the following LTL property 
for use by the SPIN model checker. 

(<>(Entity-Statel==Contacting 11 Entity-Statel=Responding)) && 
(o(Entity_State2==Contacting 11 Entity_State2==Responding)) 

The “No Attack” column gives a baseline on the behavior of the MCC represented by 
each row before an attack is added. The fact that there is no violation in any of the attacks 
verifies that in the absence of the insertion of a successful attack the communicating 
entities do indeed initialize and communicate. In the remaining three columns a 
successful attack is inserted into the three different types of communicating entities. A 
violation confirms that the attack was successful and that the communicating entities 
detected the attack and stopped before revealing secure communication. Since each 
column has at least one violation for each attack and the attack is identical across each 
MCC represented by the rows in the table it can be concluded that the attacks are 
successful. Both the Replay and DoS attacks and communication is stopped before secure 
communications are revealed. However, the Man in the Middle attack an go undetected 
in non-SSL communication and in SSL communications where certificates are not used. 
It is only when certificates are checked against a trust list for each of the securely 
communicating entities that the Man in the Middle attack is detected and communication 
is stopped before revealing the secure communications. 

Property 4 was verified by instrumenting the Man in the Middle attack and the 
environment to make the secret generated by SSL communicating entities, with and 
without certificates, known to the attack for comparison purposes only. The Man in the 
Middle attack begins intercepting and examining messages. After the examination the 
encryption secret in the message is compared to the control secret to determine if the 
attack has read the secret before encryption takes place. Once the handshake successfully 
transitions to secure communication the messages are considered encrypted and cannot 
be read by the attack as per the preface in property requirement 4. This property does not 
apply to any attack perpetrated on an non-SSL communicating entity since no secret is 
generated and therefore cannot be intercepted. The DoS and Replay attacks do not 
attempt to read a message. Therefore neither attack has an opportunity to capture the 
unencrypted message with the secret even if it is available. With regard to the Man in the 
Middle attack on SSL entities (with and without certificates), the secret was not 
successfully captured in either case. 

5. Conclusion 

22 



References 
[l] D. Gilliam, J. Kelly, M. Bishop, “Reducing Software Security Risk Through an 
Integrated Approach,” Proc. of the Ninth IEEE International Workshops on Enabling 
Technologies: Infrastructure for Collaborative Enterprises (June, 2000), Gaithersburg, 

[2] G. Fink, M. Bishop, “Property Based Testing: A New Approach to Testing for 
Assurance,” ACM SIGSOFT Software Engineering Notes 22(4) (July 1997). 
[3] M. Bishop, “Vulnerabilities Analysis,” Proceedings of the Recent Advances in 
Intrusion Detection (Sep. 1999). 
[4] J. Dodson, “Specification and Classification of Generic Security Flaws for the 
Tester’s Assistant Library,” M.S. Thesis, Department of Computer Science, University of 
California at Davis, Davis CA (June 1996). 
[5] D. Gilliam, J. Kelly, J. Powell, M. Bishop, “Development of a Software Security 
Assessment Instrument to Reduce Software Security Risk” Proc. of the Tenth IEEE 
International Workshops on Enabling Technologies: Infrastructure for Collaborative 
Enterprises, Boston, MA, pp 144- 149. 
[6] D. Gilliam, J. Powell, J. Kelly, M. Bishop, “Reducing Software Security Risk 
Through an Integrated Approach”, IEEE Goddard 26th Annual Software Engineering 
Workshop 
[7] W. Wen and F Mizoguchi. Model checking Security Protocols: A Case Study Using 
SPIN, IMC Technical Report, November, 1998. 
[8] J. R. Callahan, S. M. Easterbrook and T. L. Montgomery, “Generating Test Oracles 
via Model Checking,” NASNWVU Software Research Lab, Fairmont, WV, Technical 
Report # NASA-IVV-98-015, 
1998. 
[9] P. E. Am”, P. E. Black and W. Majurski. “Using Model Checking to Generate 
Test Specifications,” 2”d International Conference on Formal Engineering Methods 

[lo] G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall 1990; 
ISBN: 0135399254. 

MD, pp.141-146. 

(1 998) pp. 46-54. 

24 



Appendix A: Promela Code Excerpts 

mtype {Ready, Responding, Contacting} ; 

mtype Entity-State1 = Ready; 
mtype Entity-State2 = Ready; 
bit Msg-Received = 0; 
*I 
bit Msg Sent = 0; /* 0 = message not sent -- 1 = message sent */ 
int MsgId = -1 ; I* -1 = no message Id *I 
chan Network1 = [l] of {bit}; 
chan Network2 = [ 11 of {bit} 

I* 0 = message not received -- 1= message received 

active proctype CommEntity 1 () 
{ 

do 
::Entity-State1 == Ready -> I* Prerequisite State *I 

if 
:: Network1 ?Msg-Received -> /* Prerequisite Ev nt *I 

Entity-State1 = Responding; I* New State 
Entered *I 

::empty(Network2) -> 
NetworE! 1 ; I* Transition Action */ 
Msg-Sent=l; /* Transition Side Effect *I 
Entity-State1 = Contacting; /* New State Entered *I 
Msg-Sent = 0 I* Side effect does not persist within a state 

*I 
fi 

::Entity-State1 == Contacting -> I* Prerequisite State *I 
Entity-State1 = Ready; I* New State Entered *I 

::Entity-State1 == Responding -> /* Prerequisite State *I 
Entity-State1 = Ready; I* New State Entered *I 

od 
1 

Figure 8.1 : Promela Listing of Simple Communicating Entities 

25 



mtype {Ready, Responding, Contacting} ; 

mtype Entity-State1 = Ready; 
mtype Entity-State2 = Ready; 
bit Msg - Received = 0; 
*I 
bit Msg-Sent = 0; I* 0 = message not sent -- 1 = message sent *I 
int Msg Id = -1; I* -1 = no message Id */ 
chan Network1 = [ 11 of {bit}; 
chan Network2 = [l] of {bit} 

I* 0 = message not received -- 1= message received 

. . . CommEntityl Model Specification (See Figure 1.1) would be Here . . . 

active proctype CommEntity20 

do 
::Entity_State2 == Ready -> I* Prerequisite State *I 

if 
: : Network2?Msg_Received -> I* Prerequisite Event *I 

Entity-State2 = Responding; I* New State Entered 

::empty(Networkl) -> 
Network1 ! 1 ; I* Transition Action *I 
Msg Sent=l; I* Transition Side Effect *I 
EntiG-State2 = Contacting; I* New State Entered *I 
Msg-Sent = 0 I* Side effect does not persist within a state 

fi 

::Entity - State2 == Contacting -> I* Prerequisite State *I 
Entity-State2 = Ready; I* New State Entered *I 

: :Entity_State2 == Responding -> I* Prerequisite State *I 
Entity - State2 = Ready; I* New State Entered *I 

od 

Figure 8.2: Promela Listing of Simple Communicating Entities 

26 



mtype {Ready 1 , Ready2, Responding, Contacting} ; 
mtype Entity-State1 = Readyl ; 
mtype Entity State2 = Readyl ; 
bit Msg - Received = 0; 
*/ 
bit Msg-Sent = 0; /* 0 = message not sent -- 1 = message sent */ 
int Msg Id = - 1 ; /* - 1 = no message Id */ 
chanNetwork1 = [l] of {bit}; 
chan Network2 = [l] of {bit} 

/* 0 = message not received -- 1= message received 

active proctype CommEntityl () 
{ 

do 
::Entity Statel == Readyl -> 

Network2! 1 ; /* Transition &ion 
Entity-State1 = Ready2; 

lit Msg I 

::Entity - Statel == Ready2 -> /* Prerequisite State */ 
if 
:: Networkl?Msg Received -> /* Prerequisite Event */ 

::empty(Network2) -> 
Entity-Statel = Responding; /* New State Entered */ 

Network2! 1 ; /* Transition Action */ 
Msg-Sent=l; /* Transition Side Effect */ 
Entity-State1 = Contacting; /* New State Entered */ 
Msg-Sent = 0 /* Side effect does not persist w/in a state */ 

Entity-State1 = Readyl; 
::skip -> /* Placeholder for Abort Event */ 

fi 

::Entity - Statel == Contacting -> /* Prerequisite State */ 
Entity-State1 = Ready2; /* New State Entered */ 

::Entity - Statel == Responding -> /* Prerequisite State */ 
Entity-State1 = Ready2; /* New State Entered */ 

od 
1 

Figure 9.1: Promela Listing of Client Communicating Entity 

27 



mtype {Ready 1, Ready2, Responding, Contacting}; 
mtype Entity-State1 = Readyl; 
mtype Entity-State2 = Readyl; 
bit Msg-Received = 0; /* 0 = message not received -- 1= message received */ 
bit Msg-Sent = 0; /* 0 = message not sent -- 1 = message sent */ 
int Msg Id = -1; /* -1 = no message Id */ 
chan Network1 = [l]  of {bit}; 
chan Network2 = [ 11 of {bit} 

. . . Comm Entity 1 Model Specification would go Here . . . 

active proctype CommEntity’L() 

do 
{ 

::Entity_State2 = Readyl -> 
Network2?MsggReceived -> /* Prerequisite Init Event */ 
Entity-State2 = Ready2 

if 
::Entity_State2 = Ready2 -> /* Prerequisite State */ 

:: Network2?Msg_Received -7 /* Prerequisite Event */ 

: :empty(Network 1) -> 
Networkl!l; /* Transition Action */ 
Msg-Sent=l; /* Transition Side Effect */ 
Entity-State2 = Contacting; /* New State Entered */ 
Msg-Sent = 0 /* Side effect does not persist w/in a state */ 

::skip -> /* Placeholder for Abort Event */ 
Entity-State2 = Readyl; 

Entity-State2 = Responding; /* New State Entered */ 

fi 
::Entity_State2 = Contacting -> /* Prerequisite State */ 

::Entity-State2 = Responding -> /* Prerequisite State */ 
Entity-State2 = Ready2; /* New State Entered */ 

Entity-State2 = Ready2; /* New State Entered */ 
od 

1 

Figure 10.1 : Promela Listing of Server Communicating Entity 

28 



mtype {Ready 1, Ready2, Initcontact, InitResponse, Responding, Contacting}; 
mtype Entity-State1 = Readyl; 
mtype Entity-State2 = Readyl; 
int Msg-Receivedl=O; /* 0 = msg not rec. -- 1= msg rec. -- 2=init msg rec. */ 
int Msg_Received2=0; /* 0 = msg not rec. -- 1= msg rec. -- 2=init msg rec. */ 
bit Msg-Sent = 0; /* 0 = message not sent -- 1 = message sent */ 
int Msg-Id = -1; /* -1 = no message Id */ 
chan Network1 = [ 11 of { int}; 
chan Network2 = [ 11 of { int} 
active proctype CommEntityl() 
{ 

do 
::Entity-State1 = Readyl -> 

if 
::Network l?Msg-Received 1 -> 

if 
::Msg-Received1 = 2-> /* Prerequisite Event */ 

::Msg-Received1 != 2 -> 
Entity-State1 = InitResponse; 

Entity-State1 = Readyl; /* Response Aborted */ 
ti 

Network2!2; /* Transition Action Init Msg */ 
Entity-State1 = Initcontact; 

::empty(Network2) -> 

ti 

Networkl?Msg-Receivedl; 
if 

::Msg-Receivedl- 2 -> 

::Msg-Receivedl!= 2 -> 

::Entity-State1 = Initcontact -> 

Entity-State1 = Ready2; /* Comm Initiated */ 

Entity-State1 = Readyl; /* Comm Aborted */ 
ti 

::Entity-State1 = InitResponse -> 
Network2!2; /* Transition Action Init Msg */ 
Entity-State1 = Ready2; /* Comm Initiated */ 

::Entity-State1 = Ready2 -> /* Prerequisite State */ 
if 
:: Networkl?Msg-Received1 -> /* Prerequisite Event */ 

::empty(Network2) -> 
NetworU! 1 ; /* Transition Action */ 
Msg-Sent=l ; /* Transition Side Effect */ 
Entity-State1 = Contacting; /* New State Entered */ 
Msg-Sent = 0 /* Side effect does not persist within a state */ 

Entity-State1 = Readyl; 

Entity-State1 = Responding; /* New State Entered */ 

::skip -> /* End Comm Session by Aborting */ 

fi 

::Entity-State1 = Contacting -> /* Prerequisite State */ 
Entity-State1 = Ready2; /* New State Entered */ 

::Entity-State1 = Responding -> /* Prerequisite State */ 
Entity-State1 = Ready2; /* New State Entered */ 

od 
1 

Figure 11.1: Promela Listing of ClientBerver Communicating Entity 

29 



mtype {Readyl, Ready2, Initcontact, InitResponse, Responding, Contacting}; 
mtype Entity-State1 = Readyl; 
mtype Entity-State2 = Readyl; 
int Msg-Receivedl=O; /* 0 = msg not rec. -- 1= msg rec. -- 2=init msg rec. */ 
int Msg_Received2=0; /* 0 = msg not rec. -- 1= msg rec. -- 2=init msg rec. */ 
bit Msg-Sent = 0; /* 0 = message not sent -- 1 = message sent */ 
int Msg-Id = -1; /* -1  = no message Id */ 
chan Networkl = [I] of { int}; 
chan Network2 = [ 11 of { int} 

. . . Communication Entity 1 would go Here . . . 

active proctype CommEntity20 
{ 

do 
::Entity_State2 = Readyl -> 

if 
::Network2?Msg_Received2 -> 

if 
::Msg_Received2 = 2-> /* Prerequisite Event */ 

::Msg-ReceivedZ!= 2 -> 
Entity-State2 = InitResponse; 

Entity-State2 = Readyl; /* Response Aborted */ 
ti 

Network1!2; /* Transition Action Init Msg */ 
Entity-State2 = Initcontact; 

: :empty(Network 1 ) -> 

ti 

Network2?Msg_Received2; 
if 

::Msg_Received2 = 2 -> 

::Msg_Received2!= 2 -> 

::Entity_State2 = Initcontact -> 

Entity-State2 = Ready2; /* Comm Initiated */ 

Entity-State2 = Readyl; /* Comm Aborted */ 
fi 

::Entity-StateZ = InitResponse -> 
Networkl!2; /* Transition Action Init Msg */ 
Entity-State2 = Ready2; /* Comm Initiated */ 

::Entity_State2 = Ready2 -> /* Prerequisite State */ 
if 
:: Network2?Msg_Received2 -> /* Prerequisite Event */ 

Entity-State2 = Responding; /* New State Entered */ 
: :empty(Network 1 ) -> 

Networkl ! 1; /* Transition Action */ 
Msg-Senel; /* Transition Side Effect */ 
Entity-State2 = Contacting; /* New State Entered */ 
Msg-Sent = 0 /* Side effect does not persist within a state */ 

Entity-State2 = Readyl ; 
::skip -> /* End Comm Session by Aborting *I 

fi 
::Entity-State2 = Contacting -> /* Prerequisite State */ 

Entity-State2 = Ready2; /* New State Entered */ 
::Entity_State2 = Responding -> /* Prerequisite State */ 

Entity-State2 = Ready2; /* New State Entered */ 
od 

1 

Figure 11.2: Promela Listing of ClientIServer Communicating Entity 

30 



mtype {Ready 1, Ready2, Initcontact, InitResponse, Responding, Contacting} ; 
mtype Entity-State1 = Readyl; 
mtype Entity-State2 = Readyl; 
int Msg-ReceivedI=O; 
int Msg-Received2=0; 
bit Msg-Sent = 0; /* 0 = message not sent -- 1 = message sent */ 
int Msg-Id = -1; /* -1  = no message Id */ 
chan Network1 = [I] of {int,int,int}; 
chan Network2 = [l] of {int,int,int}; 
active proctype CommEntityl() 

/* 0 = message not received -- 1= message received -- 2=initi message received */ 
/* 0 = message not received -- 1= message received -- 2=initi message received */ 

{ 
int SecretX=-1 ; 
int SecretY=-1; 
int CID = -1; /* Client ID */ 
do 

::Entity-State1 = Ready1 -> 
if 
::Networkl?SecretX,SecretY,Msg-Receivedl -> 

if 
::SecretY=-1 -> /* Prerequisite Event */ 

CID=Msg-Received 1 ; 
Entity-State1 = InitResponse; 

Entity-State1 = Readyl; /* Response Aborted */ 
::SecretY != - 1  -> 

fi 

NetworkZ!-l,-l,gid; /* Transition Action Init Msg */ 
Entity-State1 = Initcontact; 

::skip -> 

fi 

Networkl?SecretX,SecretY,Msg-Received1 ; 
if 

::Entity-State1 = Initcontact -> 

::SecretY = g i d  -> 

::SecretY != g i d  -> 
Entity-State1 = Ready2; /* Comm Initiated */ 

Entity-State1 = Readyl; /* Comm Aborted */ 
fi 

::Entity-Statel = InitResponse -> 
NetworU!gid,CID,2; /* Transition Action Init Msg */ 
Entity-State1 = Ready2; /* Comm Initiated */ 

::EntityStatel = Ready2 -> /* Prerequisite State */ 
if 
:: nemptywetworkl) -> 

Networkl?SecretX,SecretY,Msg-Received 1 -> /* Prerequisite Event */ 
Entity-State1 = Responding; /* New State Entered */ 

NetworU!gid,CID,l; /* Transition Action */ 
Msg-Senel; /* Transition Side Effect */ 
Entity-State1 = Contacting; /* New State Entered */ 
Msg-Sent = 0 /* Side effect does not persist within a state */ 

::empty(Networkl) -> /* End Comm Session by Aborting */ 
Entity-State1 = Readyl; 

::skip -> 

fi 
::Entity-State1 = Contacting -> /* Prerequisite State */ 

Entity-State1 = Ready2; /* New State Entered */ 
::Entity-State1 = Responding -> /* Prerequisite State */ 

EntiQ-Statel = Ready2; /* New State Entered */ 
od 

Figure 12.1: SSL (No ID Check) Communicating Entity 1 

31 



active proctype CommEntity20 
{ 

int SecretX=-I; 
int SecretY=-1; 
int CID = -1 ; /* Client ID */ 
do 

::Entity-StateI = Readyl -> 
if 
: :Network2?SecretX,SecretY,Msg_Received2 -> 

if 
::SecretY=-1 -> /* Prerequisite Event */ 

CID=Msg_Received2; 
Entity-State1 = InitResponse; 

Entity-State1 = Readyl; /* Response Aborted */ 
::SecretY != -1 -> 

ti 

Networkl !-1,-I , g i d ;  /* Transition Action Init Msg */ 
Entity-State1 = Initcontact; 

::skip -> 

ti 

::Entity-State1 = Initcontact -> 
Network2?SecretX,SecretY,Msg-Received2; 
if 

::SecretY = q i d  -> 

::SecretY != g i d  -> 
Entity-State1 = Ready2; /* Comm Initiated */ 

Entity-State1 = Readyl; /* Comm Aborted */ 
fi 

::Entity-State1 = InitResponse -> 
Networkl !qid,CID,2; /* Transition Action Init Msg */ 
Entity-State1 = Ready2; /* Comm Initiated */ 

::Entity-StateI = Ready2 -> /* Prerequisite State */ 
if 
:: nempty(Network1) -> 

Network2?SecretX,SecretY,Msg-Received2 -> /* Prerequisite Event */ 
Entity-State1 = Responding; /* New State Entered */ 

Networkl !gid,CID,l;  /* Transition Action */ 
Msg-Sent=l ; /* Transition Side Effect */ 
Entity-State1 = Contacting; /* New State Entered */ 
Msg-Sent = 0 /* Side effect does not persist within a state */ 

::empty(Networkl) -> /* End Comm Session by Aborting */ 
Entity-State1 = Readyl; 

::skip -> 

ti 

::Entity-State1 = Contacting -> /* Prerequisite State */ 
Entity-State1 = Ready2; /* New State Entered */ 

::Entity-State1 = Responding -> /* Prerequisite State */ 
Entity-State1 = Ready2; /* New State Entered */ 1 od 

Figure 12.2: SSL (No ID Check) Communicating Entity 2 

32 



I active proctype CommEntityl() 
{ 

int SecretX=- 1 ; 
int SecretY=-1; 
int CID = -1; /* Client ID */ 
int Trust = -1; /* Single certificate Trust list */ 
atomic{ 

Network2!-1 , - l , j i d ;  
Networkl ?SecretX,SecretY,Trust; } 

do 
::Entity-Statel = Readyl -> 

if 
::Networkl?SecretX,SecretY,Msg-Received 1 -> 

if 
::SecretY=-1 -> /* Prerequisite Event */ 

CID=Msg-Received 1 ; 
Entity-State1 = InitResponse; 

Entity-State1 = Readyl; /* Response Aborted */ 
:: SecretY != -1 -> 

fi 

Network2!-l,-l,gid; /* Transition Action Init Msg */ 
Entity-State1 = Initcontact; 

::skip -> 

fi 

Network 1 ?SecretX,SecretY,Msg-Received 1 ; 
if 

::SecretX = Trust && SecretY = g i d  -> 

::Entity_Statel = Initcontact -> 

Entity-Statel= Ready2; /* Comm Initiated */ 

Entity-State1 = Readyl; /* Comm Aborted */ 
::SecretX != Trust 1 1  SecretY != q i d  -> 

fi 

if 
::Entity-State1 = InitResponse -> 

::Msg-Received1 = Trust -> 
Network2!qid,CID,2; /* Transition Action Init Msg */ 
Entity-State1 = Ready2; /* Comm Initiated */ 

Entity-State1 = Readyl; 
::Msg-Received1 != Trust -> 

ti 

::Entity-State1 = Ready2 -> /* Prerequisite State */ 
if 
:: nempty(Network1) -> 

Networkl?SecretX,SecretY,Msg-Received1 -> /* Prerequisite Event */ 
Entity-State1 = Responding; /* New State Entered */ 

: :empty(Network 1) -> 
Network2!qid,CID, 1; /* Transition Action */ 
Msg-Sent=l; /* Transition Side Effect */ 
Entity-State1 = Contacting; /* New State Entered */ 
Msg-Sent = 0 /* Side effect does not persist within a state */ 

fi 
::Entity-State1 = Contacting -> /* Prerequisite State */ 

Entity-State1 = Ready;?; /* New State Entered */ 
Networkl ?SecretX, SecretY,Msg-Received 1 ; 

::Entity-State1 = Responding -> /* Prerequisite State */ 
Entity-State1 = Ready2; /* New State Entered */ 
NetworkZ!qid,CID,l ; 

od 
1 

Figure 13.1 SSL Communication Entity 1 
33 



active proctype CommEntity2() 
I 

int SecretX=- 1 ; 
int SecretY=- 1 ; 
int CID = -1; /* Client ID */ 
int Trust = -1; /* Single Certificate Trust List */ 
atomic{ 

Networkl !-1,-1 ,$id; 
Network2?SecretX,SecretY,Trust;} 

do 
::Entity_State2 = Readyl -> 

if 
::Network2?SecretX,SecretY,Msg-Received2 -> 

if 
::SecretY=-1 -> /* Prerequisite Event */ 

CIPMsg-Received2; 
Entity-State2 = InitResponse; 

Entity-State2 = Readyl ; /* Response Aborted */ 
::SecretY != -1 -> 

fi 

Networkl ! - l , - l , j i d ;  /* Transition Action Init Msg */ 
Entity-State2 = Initcontact; 

::skip -> 

fi 

Network2?SecretX, SecretY,Msg_Received2; 
if 

::SecretX = Trust && SecretY = g i d  -> 

::SecretX != Trust 11 SecretY != q i d  -> 

::Entity-State2 = Initcontact -> 

Entity-State2 = Ready2; /* Comm Initiated */ 

Entity-State2 = Readyl ; /* Comm Aborted */ 
fi 

if 
::Entity_State2 = InitResponse -> 

::Msg_Received2 = Trust -> 
Networkl !gid,CID,2; /* Transition Action Init Msg */ 
Entity-State2 = Ready2; /* Comm Initiated */ 

Entity-State2 = Readyl; 
::Msg_Received2 != Trust -> 

fi 

if 
::Entity-State2 = Ready2 -> /* Prerequisite State */ 

:: nempty(Network1) -> 
Network2?SecretX,SecretY ,Msg_Received2 -> /* Prerequisite Event */ 
Entity-State2 = Responding; /* New State Entered */ 

::empty(Networkl) -> 
Networkl !qid,CID,2; /* Transition Action */ 
Msg-Sent=l; /* Transition Side Effect */ 
Entity-State2 = Contacting; /* New State Entered */ 
Msg-Sent = 0 /* Side effect does not persist within a state */ 

fi 
::EntityPState2 = Contacting -> /* Prerequisite State */ 

Entity-State2 = Ready2; /* New State Entered */ 
Network2?SecretX, SecretY,Msg_Received2; 

::EntityVState2 = Responding -> /* Prerequisite State */ 
Entity-State2 = Ready2; /* New State Entered */ 
Network 1 !gid,CID,2; 

od 
1 

Figure 13.2: SSL Communication Entity 2 

34 



active proctype ManInMiddleAttackO 
{ 

int Sender = -1; 
int Receiver = - 1 ; 
int Message = - 1 ; 

progress: do 
::nempty(Networkl) && (Sender = -1 11 Receiver = -1)-> 

atomic 
{ 

Network 1 ?Sender,Receiver,Message; 
Network 1 !qid,Receiver,Message; 
empty(Network 1 ); 

1 

{ 

::nempty(Network2) && (Sender = -1 1 1  Receiver = -1)-> 
atomic 

Network2?Sender,Receiver,Message; 
Network2 !gid,Receiver,Message; 
empty(Network2); 

} 
od 

f 

Figure 14.1: Man-in-the-Middle Attack 

active proctype ReplayAttackO 
{ 

int Sender = -1; 
int Receiver = - 1 ; 
int Message = -1 ; 

do 
::nempty(Networkl) -> 

Network 1 ?Sender,Receiver,Message; 
Network 1 !gid,Receiver,Message; 
Network1 !gid,Receiver,Message; 

::nempty(Network2) -> 
Network2?Sender,Receiver,Message; 
Network2!qid,Receiver,Message; 
Network2 !qid,Receiver,Message; 

od 
f 

Figure 15.1: Replay Attack 

35 



active proctype DoSAttackO 
{ 

int Sender = -1; 
int Receiver = - 1 ; 
int Message = -1; 

do 
::Network1 !g id , - l , - l ;  
::NetworE!gid,-l ,-I; 

od 

Figure 16.1 : Denial of Service (DoS) Attack 

36 



Appendix B: SPIN Output for Verification Results 

#define p Entity-StateI==Contacting 
#define q Entity-State 1 =Responding 
#define r Entity_State2==Contacting 
#define s Entity_State2==Responding 

/* 
* Formula As Typed: (0 (p I (  9)) && (0 (r 11 s)) 
* The Never Claim Below Corresponds 
* To The Negated Formula !((e (p I( 4)) && (0 (r 1 1  s))) 
* (formalizing violations of the original) 
*I  

never { /* !((e (P II 4)) && (0 (r I1 s))) */ 
accept-init: 
TO-init: 

if 
:: (! ((r)) && ! ((s))) -> goto accept-S2 
:: (! ((p)) && ! ((4))) -> goto accept-S5 
fi; 

accept-S2: 
TO-S2: 

if 
:: (! ((r)) && ! ((s))) -> goto accept-S2 
fi; 

accept-%: 
TO-S5: 

if 
:: (! ((p)) && ! ((9))) -> goto accept-SS 
fi; 

1 

Figure 17.1: Property Expressing “Eventually Secure Communication is 
ArhiPvPd” 

37 



warning: -i or -I work for safety properties only 
warning: for p.0. reduction to be valid the never claim must be stutter-invariant 
(never claims generated from LTL formulae are stutter-invariant) 
(Spin Version 4.0.4 -- 12 April 2003) 

+ Partial Order Reduction 

Full statespace search for: 
never-claim + 
assertion violations 
acceptance cycles + (fairness disabled) 
invalid endstates 

+ (if within scope of claim) 

- (disabled by never-claim) 

State-vector 96 byte, depth reached 65, errors: 0 
688 states, stored (1 376 visited) 
1402 states, matched 
2778 transitions (= visited+matched) 

96 atomic steps 
hash conflicts: 4 (resolved) 
(max size 2/'19 states) 

2.622 memory usage (Mbyte) 

unreached in proctype CommEntityl 
line 64, state 32, "Entity - State1 = Readyl" 
line 86, state 55, "-end-" 
(2 of 55 states) 

line 138, state 32, "Entity-State2 = Readyl" 
line 161, state 55, "-end-" 
(2 of 55 states) 

unreached in proctype CommEntity2 

Figure 17.2: Property verities for SSL Signed Entities when no attack is present 
- No Attack was recognized 

38 



preparing trail, please wait ... done 
spin: warning, "pan-in", global, 'bit Msg-Sent' variable is never used 
spin: warning, "pan-in", global, 'int Msg-Id' variable is never used 
spin: couldn't find claim (ignored) 
2: 
2: 
4: proc 2 (ManInMiddleAttack) line 170 "pan-in" (state 1) [((nempty(Networkl)&&((Sender==- 

6: 
6: 
7: 
7: 
9: 
9: proc 0 (CommEntityl) line 24 "pan-in" (state 1) [Network2!-(l),-(l),jid] 
10: 
10: proc 0 (CommEntityl) line 25 "pan-in" (state 2) [Networkl?SecretX,SecretY,Tmst] 
12: proc 2 (ManInMiddleAttack) line 175 "pan-in" (state 4) [(empty(Networkl))l 
14: proc 2 (ManInMiddleAttack) line 178 "pan-in" (state 6) [((nempty(Network2)&&((Sende-- 

(1 ))II(Receiver---(1)))))1 
16: 
16: proc 2 (ManInMiddleAttack) line 181 "pan-in" (state 7) [Network2?Sender,Receiver,Message] 
17: 
17: 
19: 
19: proc 1 (CommEntity2) line 98 "pan-in" (state 2) [Network2?SecretX,SecretY,Trust] 

23: proc 1 (CommEntity2) line 102 "pan-in" (state 4) [((Entity_state2=Readyl))] 
25: proc 0 (CommEntityl) line 29 "pan-in" (state 4) [((Entity-Statel=Readyl))] 
27: proc 0 (CommEntityl) line 42 "pan-in" (state 13) [((Entity_State2!=1nitContact))] 
28: 
28: proc 0 (CommEntityl) line 43 "pan-in" (state 14) [Network2!-(1).-(1).jid] <merge 0 now @ 15> 
28: 
30: proc 2 (ManInMiddleAttack) line 178 "pan-in" (state 6) [((nempty(Network2)&&((Sender=- 

32: 
32: proc 2 (ManInMiddleAttack) line 181 "pan-in" (state 7) [Network2?Sender,Receiver,Message] 
33: 
33: proc 2 (ManInMiddleAttack) line 182 "pan-in" (state 8) [Network2!qid,Receiver,Message] 
35: 
35: proc I (CommEntity2) line 107 "pan-in" (state 5) [Network2?SecretX,SecretY,Msg-Received2] 
36: proc 1 (CommEntity2) line 112 "pan-in" (state 9) [(((Secretx!=-(1))11(SecretY!=-(l))))] <merge 0 now 

36: 

proc 1 (CommEntity2) line 97 "pan-in" (state -) 
proc 1 (CommEntity2) line 97 "pan-in" (state 1) 

[values: 1!-1,-1,1] 
Network1 !-(l),-(l),jid] 

(1 ))ll(Receivei---(1)))))1 
proc 2 (ManInMiddleAttack) line 173 "pan-in" (state -) 
proc 2 (ManInMiddleAttack) line 173 "pan-in" (state 2) 
proc 2 (ManInMiddleAttack) line 174 "pan-in" (state -) 
proc 2 (ManInMiddleAttack) line 174 "pan-in" (state 3) 
proc 0 (CommEntityl) line 24 "pan-in" (state -) 

proc 0 (CommEntityl) line 25 "pan-in" (state -) 

[values: l?-1,-1,1] 
[Network 1 ?Sender,Receiver,Message] 
[values: 1!2,-1,1] 
[Network 1 !gid,Receiver,Message] 

[values: 2!-1,-1,0] 

[values: 1?2,-1,1] 

proc 2 (ManInMiddleAttack) line 181 "pan-in" (state -) 

proc 2 (ManInMiddleAttack) line 182 "pan-in" (state -) 
proc 2 (ManInMiddleAttack) line 182 "pan-in" (state 8) 
proc 1 (CommEntity2) line 98 "pan-in" (state -) 

[values: 2?-1,-1,0] 

[values: 2!2,-1,0] 
Network2 !gid,Receiver,Message] 

[values: 2?2,-1,0] 

2 1 : proc 2 (ManInMiddleAttack) line 183 "pan-in" (state 9) [(empty(Network2))1 

proc 0 (CommEntityl) line 43 "pan-in" (state -) 

proc 0 (CommEntityl) line 44 "pan-in" (state 15) 

[values: 2!-1,-1,0] 

[Entity-State1 = InitContact] <merge 52 now @52> 

(1))II(Receiver=-(1)))))1 
proc 2 (ManInMiddleAttack) line 181 "pan-in" (state -) 

proc 2 (ManInMiddleAttack) line 182 "pan-in" (state -) 

proc 1 (CommEntity2) line 107 "pan-in" (state -) 

[values: 2?-1,-1,0] 

[values: 2!2,-1,0] 

[values: 2?2,-1,0] 

@IO> 

38: proc 2 (ManInMiddleAttack) line 183 "pan-in" (state 9) [(empty(Networ~))I 
proc 1 (CommEntity2) line 113 "pan-in" (state 10) tEntity-State2 = Ready11 

[((Entity_State2=Ready l))] 
[((Entity-State 1 =InitContact))] 

<merge 52 now @52> 

[values: 2!0,-1,1] 
[NetworkZ!jid,CID, 11 

40: 
42: 

<<<<<START OF CYCLE>>>>> 
4.5: 
45: 
spin: trail ends after 45 steps 
#processes: 3 
45: 
45: 
45: 
3 processes created 

proc 1 (CommEntityZ) line 102 "pan-in" (state 4) 
proc 0 (CommEntityl) line 49 "pan-in" (state 19) 

proc 0 (CommEntityl) line 73 "pan-in" (state -) 
proc 0 (CommEntityl) line 73 "pan-in" (state 40) 

proc 2 (ManInMiddleAttack) line 169 "pan-in" (state 
proc 1 (CommEntity2) line 103 "pan-in" (state 18) 
proc 0 (CommEntityl) line 74 "pan-in" (state 41) 

Figure 17.3: Property Counterexample for SSL Signed Entities - Man in the 
Middle Attack is recognized and secure communication is stopped 

39 



preparing trail, please wait ... done 
spin: warning, "pan-in", global, 'bit Msg-Sent' variable is never used 
spin: warning, "pan-in", global, 'int Msg-Id' variable is never used 
spin: couldn't find claim (ignored) 
2: 
2: 
4: 
6: 
6: 
8: 
8: 
10: 
10: 
11: 
11: 
13: 
13: 
15: 
17: 
17: 
19: 
19: 
21: 
21: 
23: 
23: 
25: 
27: 
27: 
29: 
29: 
31: 
33: 
35: 
37: 

proc 1 (~ommEniity2) line 97 ttpan-inl' (state -1 
proc 1 (CommEntity2) line 97 "pan-in" (state 1) 
proc 2 (ReplayAttack) line 170 "pan-in" (state 1) 
proc 2 (ReplayAttack) line 17 1 "pan-in" (state -) 
proc 2 (ReplayAttack) line 17 1 "pan-in" (state 2) 
proc 2 (ReplayAttack) line 172 "pan-in" (state -) 
proc 2 (ReplayAttack) line 172 "panjn" (state 3 )  
proc 0 (CommEntityl) line 24 "pan-in" (state -) 
proc 0 (CommEntityl) line 24 "pan-in" (state 1) 
proc 0 (CommEntityl) line 25 "pan-in" (state -) 
proc 0 (CommEntityl) line 25 "pan-in" (state 2) 
proc 2 (ReplayAttack) line 173 "pan-in" (state -) 
proc 2 (ReplayAttack) line 
proc 2 (ReplayAttack) line 
proc 2 (ReplayAttack) line 
proc 2 (ReplayAttack) line 
proc 2 (ReplayAttack) line 
proc 2 (ReplayAttack) line 

73 "pan-in" (state 4) 
75 "par-in" (state 5) 
76 "pan-in" (state -) 
76 "pan-in" (state 6) 
77 "pan in" (state -) - -  
77 ''pan-in'! (state i )  

proc 1 (CommEntity2) line 98 "pan-in" (state -) 
proc 1 (CommEntity2) line 98 "pan-in" (state 2) 
proc 2 (ReplayAttack) line 178 "pan-in" (state -) 
proc 2 (ReplayAttack) line 178 "pan-in" (state 8) 
proc 2 (ReplayAttack) line 170 "pan-in" (state 1) 
proc 2 (ReplayAttack) line 17 1 "pan-in" (state -) 
proc 2 (ReplayAttack) line 171 "pan-in" (state 2) 
proc 2 (ReplayAttack) line 172 "pan-in" (state -) 
proc 2 (ReplayAttack) line 172 "pan-in" (state 3) 
proc 1 (CommEntity2) line 102 "pan-in" (state 4) 
proc 1 (CommEntity2) line 115 "pan-in" (state 13) 
proc 0 (CommEntityl) line 29 "pan-in" (state 4) 
proc 0 (CommEntityl) line 42 "pan-in" (state 13) 

<<<<<START OF CYCLE>>>>> 
40: proc 0 (CommEntityl) line 82 "pan-in" (state 49) 

transition failed 
spin: trail ends after 40 steps 
#mocesses: 3 

[values: 1 !-1,-1,1] 
[Networkl !-( l),-( l) ,qid] 

[values: l?-1,-1,1] 
[Network 1 ?Sender,Receiver,Message] 
[values: 1!2,-1,1] 
[Network 1 !qid,Receiver,Message] 
[values: 2!- 1 ,- 1 ,O] 
[Network2!-( l),-( l ) ,qid]  
[values: 1?2,-1,1] 
[Networkl ?SecretX,SecretY ,Trust] 
[values: 1!2,-1,1] 
[Network 1 !qid,Receiver,Message] 
[(nempty(NetworW)I 
[values: 2?- 1 ,- 1,0] 
[Networli!?Sender,Receiver,Message] 
[values: 2!2,-1,0] 
[Network2 !gid,Receiver,Message] 
[values: 2?2,-1,0] 
[Network2?SecretX,SecretY ,Trust] 
[values: 2!2,-1,0] 
[Network2 !gid,Receiver,Message] 
[(nemptywetwork l))] 
[values: 1?2,-1,1] 
[Networkl ?Sender,Receiver,Message] 
[values: 1!2,-l,l] 
[Network 1 !gid,Receiver,Message] 
[ (( Entity_State2==Ready 1 ))] 
[((Entity-State 1 !=Initcontact))] 
[((Entity-State 1 ==Ready1 ))I 
[((Entity_State2!=1nitContact))] 

[(nempty(Networkl))I 

[((Entity-State 1 ==Responding))] 

Figure 17.4: Property Counterexample for SSL Signed Entities - Replay Attack 
is recognized and secure communication is stopped 

40 



preparing trail, please wait ... done 
spin: warning, "pan-in", global, 'bit Msg-Sent' variable is never used 
spin: warning, "pan-in", global, 'int Msg-Id' variable is never used 
spin: warning, "pan-in", proctype DoSAttack, 'int Sender' variable is never used 

I spin: warning, "pan-in", proctype DoSAttack, lint Receiver' variable is never used 
spin: warning, "pan-in", proctype DoSAttack, 'int Message' variable is never used 
spin: couldn't find claim (ignored) 
2: 
2: 
4: 
4: 

proc 2 (DoSAttack) line 170 "pan-in" (state -) 
proc 2 (DoSAttack) line 170 "pan-in" (state 1) 
proc 2 (DoSAttack) line 171 "pan-in" (state -) 
proc 2 (DoSAttack) line 171 "pan-in" (state 2) 

[values: 1!2,-1,-11 
[Network1 !gid,-( l),-( I)] 
[values: 2!2,-1,-11 
[Network2!gid,-( l),-(1)] 

<<<<<START OF CYCLE>>>>> 

#processes: 3 
~ spin: trail ends after 6 steps 

6: 
6: 
6: 

proc 2 (DoSAttack) line 169 "pan-in" (state 3) 
proc 1 (CommEntity2) line 95 "pan-in" (state 3) 
proc 0 (CommEntityl) line 22 "pan-in" (state 3) 

3 processes created 

~ ~~ 

Figure 17.5: Property Counterexample for SSL Signed Entities - Denial of 
Service Attack is recognized and secure communication is stopped 

41 



warning: -i or -I work for safety properties only 
warning: for p.0. reduction to be valid the never claim must be stutter-invariant 
(never claims generated from LTL formulae are stutter-invariant) 
(Spin Version 4.0.4 -- 12 April 2003) 

+ Partial Order Reduction 

Full statespace search for: 
never-claim + 
assertion violations 
acceptance cycles + (fairness disabled) 
invalid endstates - (disabled by never-claim) 

+ (if within scope of claim) 

State-vector 88 byte, depth reached 56, errors: 0 
530 states, stored (1060 visited) 
1028 states, matched 
2088 transitions (= visited+matched) 

32 atomic steps 
hash conflicts: 0 (resolved) 
(max size 2"19 states) 

2.622 memory usage (Mbyte) 

unreached in proctype CommEntityl 
line 47, state 2 1 ,  "EntityState 1 = Ready 1 " 
line 73, state 47, "-end-" 
(2 of 47 states) 

line 107, state 2 1, "Entity-State2 = Readyl" 
line 134, state 47, "-end-" 
(2 of 47 states) 

unreached in proctype CommEntity2 

Figure 17.6: Property verifies for SSL Unsigned Entities when no attack is 
present - No Attack was recognized 

42 



warning: -i or -I work for safety properties only 
warning: for p.0. reduction to be valid the never claim must be stutter-invariant 
(never claims generated fiom LTL formulae are stutter-invariant) 
(Spin Version 4.0.4 -- 12 April 2003) 

+ Partial Order Reduction 

Full statespace search for: 
never-claim + 
assertion violations 
acceptance cycles + (fairness disabled) 
invalid endstates - (disabled by never-claim) 

+ (if within scope of claim) 

State-vector 104 byte, depth reached 70, errors: 0 
4699 states, stored (9398 visited) 
14469 states, matched 
23 867 transitions (= visited+matched) 
2760 atomic steps 

hash conflicts: 53 (resolved) 
(max size 2"19 states) 

3.134 memory usage (Mbyte) 

unreached in proctype CommEntityl 
line 47, state 2 1, "Entity-State 1 = Ready 
line 73, state 47, "-end-" 
(2 of 47 states) 

unreached in proctype CommEntity2 

I, 

line 107, state 2 1, "EntitylState2 = Ready1 I' 
line 134, state 47, "-end-" 
(2 of 47 states) 

unreached in proctype ManInMiddleAttack 
line 158, state 14, "-end-" 
(1 of 14 states) 

Figure 17.7: Property verifies for SSL Unsigned Entities when Man in the 
Middle is present - Man in the Middle Attack was not recognized 

43 



preparing trail, please wait.. .done 
spin: warning, "pan-in", global, 'bit Msg-Sent' variable is never used 
spin: warning, "pan-in", global, 'int Msg-Id' variable is never used 
spin: couldn't find claim (ignored) 
2: 
4: 
5: 
5: 

5 :  

7: 
9: 
9: 
1 1 : 
11: 
13: 
15: 
17: 
17: 

18: 

18: 
now @44> 
20: 
20: 
22: 
24: 
24: 

25: 

25: 
now @44> 
27: 
<<<<<START OF CYCLE>>>>> 
spin: trail ends after 30 steps 
#processes: 3 
30: 
30: 
30: 
3 processes created 

proc 1 (CommEntity2) line 81 "pan-in" (state 1) 
proc 1 (CommEntity2) line 94 "pan-in" (state 10) 
proc 1 (CommEntity2) line 95 "pan-in" (state -) 
proc 1 (CommEntity2) line 95 "pan-in" (state 11) 

proc 1 (CommEntity2) line 96 "panin" (state 12) 
<merge 44 now @44> 
proc 2 (ReplayAttack) line 143 "pan-in" (state 1) 
proc 2 (ReplayAttack) line 144 "pan-in" (state -) 
proc 2 (ReplayAttack) line 144 "pan-in" (state 2) 
proc 2 (ReplayAttack) line 145 "pan-in" (state -) 
proc 2 (ReplayAttack) line 145 "pan-in" (state 3) 
proc 1 (CommEntity2) line 101 "pan-in" (state 16) 
proc 0 (CommEntityl) line 21 "pan-in" (state 1) 
proc 0 (CommEntityl) line 26 "pan-in" (state -) 
proc 0 (CommEntityI) line 26 "pan-in" (state 2) 
[Network 1 ?SecretX,SecretY ,Msg-Received 11 
proc 0 (CommEntityl) line 3 1 "pan-in" (state 6) 
<merge 0 now @7> 
proc 0 (CommEntityl) line 32 "pm-in" (state 7) 

proc 2 (ReplayAttack) line 146 "pan-in" (state -) 
proc 2 (ReplayAttack) line 146 "pan-in" (state 4) 
proc 0 (CommEntityl) line 21 "pan-in" (state 1) 
proc 0 (CommEntityl) line 26 "pan-in" (state -) 
proc 0 (CommEntityl) line 26 "pan-in" (state 2) 
[Networkl ?SecretX,SecretY,Msg-Received 1 ] 
proc 0 (CommEntityl) line 3 1 "pat-in" (state 6) 
<merge 0 now @7> 
proc 0 (CommEntityl) line 32 "pan-in" (state 7) 

proc 0 (CommEntityl) line 21 "pan-in" (state 1) 

now @12> 

proc 2 (ReplayAttack) line 142 "panin" (state 9) 
proc 1 (CommEntity2) line 102 "pan-in" (state 17) 
proc 0 (CommEntityl) line 22 "pan-in" (state 15) 

[ 1  ((Entity-State2==Ready ))] 
[((Entity_State2!=1nitContact))] 
[values: 1 !-1,-1,1] 
[Networkl !-( l),-( l) ,gid] <merge 0 

[Entity_State2 = InitContact] 

[ (nemptywetwork 1 ))] 
[values: l?-1,-1,1] 
[Network 1 ?Sender,Receiver,Message] 
[values: 1!2,-l,l] 
[Network 1 !gid,Receiver,Message] 
[((Entity_State2==1nitContact))] 
[((Entity-State l==Ready l))] 
[values: 1?2,-1,1] 

[(((SecretX!=-( I))I/(SecretY !=-( l))))] 

[Entity-State1 = Ready11 <merge 44 

[values: 1 !2,-1,1] 
[Networkl !gid,Receiver,Message] 
[((Entity-Statel==Ready l))] 
[values: 1?2,-1,1] 

[ ((( SecretX ! =-( 1 ))I I( SecretY ! =-( 1 ))))I 

[Entity-State1 = Ready11 <merge 44 

[ 1 1  (( Entity-State ==Ready ))] 

Figure 17.8: Property Counterexample for SSL Unsigned Entities - Replay 
Attack is recognized and secure communication is stopped 

44 



preparing trail, please wait. ..done 
spin: warning, "pan-in", global, 'bit Msg-Sent' variable is never used 
spin: warning, "pan-in", global, 'int Msg-Id' variable is never used 
spin: warning, "pm-in", proctype DoSAttack, 'int Sender' variable is never used 
spin: warning, "pan-in", proctype DoSAttack, 'int Receiver' variable is never used 
spin: warning, "pan-in", proctype DoSAttack, 'int Message' variable is never used 
spin: couldn't find claim (ignored) 
2: [values: 1!2,-1,-1] 
2: metwork1 !qid,-( I),-( l)] 
4: [values: 2!2,-1,-I] 
4: proc 2 (DoSAttack) line 144 "pan-in" (state 2) [Network2!gid,-(l),-(l)] 
6: [((Entity-State2==Readyl))] 
8: proc 1 (CommEntity2) line 94 "pan-in" (state 10) [((Entity-State2!=InitContact))] 
10: proc 0 (CommEntityl) line 21 "pan-in" (state 1) [((Entity-Statel==Readyl))] 
12: proc 0 (CommEntityl) line 34 "pan-in" (state 10) [((Entity_State2!=1nitContact))] 

15: proc 0 (CommEntityl) line 69 "pan-in" (state 41) [((Entity-Statel==Responding))] 

proc 2 (DoSAttack) line 143 "pm-in" (state -) 
proc 2 (DoSAttack) line 143 "pan-in" (state 1) 
proc 2 (DoSAttack) line 144 "pan-in" (state -) 

proc 1 (CommEntity2) line 8 1 "pandin" (state 1) 

<<<<<START OF CYCLE>>>>> 

transition failed 
spin: trail ends after 15 steps 
#processes: 3 
15: 
15: 
15: 

3 processes created 

proc 2 (DoSAttack) line 142 "pan-in" (state 3) 
proc 1 (CommEntity2) line 95 "pan-in" (state 11) 
proc 0 (CommEntityl) line 69 "pan-in" (state 41) 

Figure 17.9: Property Counterexample for SSL Unsigned Entities - Denial of 
Service Attack is recognized and secure communication is stopped 

45 



warning: -i or -I work for safety properties only 
warning: for p.0. reduction to be valid the never claim must be stutter-invariant 
(never claims generated from LTL formulae are stutter-invariant) 
(Spin Version 4.0.4 -- 12 April 2003) 

+ Partial Order Reduction 

Full statespace search for: 
never-claim + 
assertion violations 
acceptance cycles + (fairness disabled) 
invalid endstates - (disabled by never-claim) 

+ (if within scope of claim) 

State-vector 48 byte, depth reached 64, errors: 0 
443 states, stored (886 visited) 
846 states, matched 
1732 transitions (= visited+matched) 
32 atomic steps 

hash conflicts: 0 (resolved) 
(max size 2*19 states) 

2.622 memory usage (Mbyte) 

unreached in proctype CommEntityl 
line 43, state 20, "Entity-State1 = Readyl" 
line 67, state 43, "-end-" 
(2 of 43 states) 

line 97, state 20, "Entity-State2 = Readyl" 
line 12 1, state 43, "-end-" 
(2 of 43 states) 

unreached in proctype CommEntity2 

Figure 17.10: Property verifies for Non-SSL Client Server Entities when no 
attack is present - No Attack was recognized 

46 



warning: -i or -I work for safety properties only 
warning: for p.0. reduction to be valid the never claim must be stutter-invariant 
(never claims generated from LTL formulae are stutter-invariant) 
(Spin Version 4.0.4 -- 12 April 2003) 

+ Partial Order Reduction 

Full statespace search for: 
never-claim + 
assertion violations 
acceptance cycles + (fairness disabled) 
invalid endstates - (disabled by never-claim) 

+ (if within scope of claim) 

State-vector 56 byte, depth reached 90, errors: 0 
3907 states, stored (7814 visited) 
13935 states, matched 
2 1749 transitions (= visited+matched) 
2932 atomic steps 

hash conflicts: 9 (resolved) 
(max size 2"19 states) 

2.827 memory usage (Mbyte) 

unreached in proctype CommEntityl 
line 43, state 20, "Entity-State1 = Readyl" 
line 67, state 43, "-end-" 
(2 of 43 states) 

line 97, state 20, "Entity-State2 = Readyl " 
line 12 1, state 43, "-end-" 
(2 of 43 states) 

unreached in proctype ManInMiddleAttack 
line 144, state 14, "-end-" 
(1 of 14 states) 

unreached in proctype CommEntity2 

Figure 17.11: Property verifies for Non-SSL Client Server Entities when Man 
in the Middle is present - Man in the Middle Attack was not recognized 

47 



preparing trail, please wait ... done 
spin: warning, "pan-in", global, 'bit Msg-Sent' variable is never used 
spin: warning, "pan-in", global, lint Msg-Id' variable is never used 
spin: couldn't find claim (ignored) 
2: 
4: 
5: 
5: 

5 :  

7: 
9: 
9: 
11: 
1 1 : 
13: 
15: 
15: 

40: 
40: 
3 processes created 

proc 1 (CommEntity2) line 72 "pan-in" (state 1) 
proc 1 (CommEntity2) line 84 "par-in" (state 9) 
proc 1 (CommEntity2) line 85 "pan-in" (state -) 
proc 1 (CommEntity2) line 85 "pan-in" (state 10) 

proc 1 (CommEntity2) line 86 "pan-in" (state 11) 
<merge 40 now @40> 
proc 2 (ReplayAttack) line 128 "par-in" (state 1) 
proc 2 (ReplayAttack) line 129 "pan-in" (state -) 
proc 2 (ReplayAttack) line 129 "pan-in" (state 2) 
proc 2 (ReplayAttack) line 130 "pan-in" (state -) 
proc 2 (ReplayAttack) line 130 "pan-in" (state 3) 
proc 0 (CommEntityl) line 18 "par-in" (state 1) 
proc 0 (CommEntityl) line 23 "pan-in" (state -) 
proc 0 (CommEntityl) line 23 "pan-in" (state 2) 
proc 2 (ReplayAttack) line 173 "pan-in" (state 4) 
proc 1 (CommEntity2) line 116 "pan-in" (state 14) 
proc 0 (CommEntityl) line 82 "pan-in" (state 49) 

@11> 

[((EntityPState2==Ready 1 ))] 
[((Entity-State 1 !=Initcontact))] 
[values: 1 !2] 
[Networkl!2] <merge 0 now 

[Entity_State2 = InitContact] 

[ (nempty(Network 1 ))] 
[values: 1?2] 
wetwork1 ?Message] 
[values: 1 !2] 
[Network 1 !Message] 
[((Entity-State 1 ==Ready 1 ))I 
[values: 1?2] 
[Networkl?Msg-Received1]40: 

Figure 17.12: Property Counterexample for Non-SSL Client Server Entities - 
Replay Attack is recognized and communication is stopped 

48 



preparing trail, please wait ... done 
spin: warning, "pan-in", global, 'bit Msg-Sent' variable is never used 
spin: warning, "pan-in", global, 'int Msg-Id' variable is never used 
spin: couldn't find claim (ignored) 
2: [values: l!-I] 
2: [Network1 !-( l)] 
4: [values: 2!-I] 
4: [Network2!-( l)] 
6: proc 1 (CommEntity2) line 72 "pan-in" (state 1) [((Entity_State2==Readyl))] 
8: [((Entity-State1 !=InitContact))] 
10: proc 0 (CommEntityl) line 18 "pan-in" (state 1) [((Entity-Statel==Readyl))] 
12: proc 0 (CommEntityl) line 30 "pan-in" (state 9) [((Entity_State2!=InitContact))] 

<<<<<START OF CYCLE>>>>> 
15: proc 0 (CommEntityl) line 64 "pan-in" (state 38) [((Entity-StateI==Responding))] 

transition failed 
spin: trail ends after 15 steps 
#processes: 3 
15: 
15: 
15: 

3 processes created 

proc 2 (DoSAttack) line 126 "pan-in" (state -) 
proc 2 (DoSAttack) line 126 "pan-in" (state 1) 
proc 2 (DoSAttack) line 127 "pan-in" (state -) 
proc 2 (DoSAttack) line 127 "pan-in" (state 2) 

proc 1 (CommEntity2) line 84 "pan-in" (state 9) 

proc 2 (DoSAttack) line 125 "pan-in" (state 3) 
proc 1 (CommEntity2) line 85 "pan-in" (state 10) 
proc 0 (CommEntityl) line 64 "pan-in" (state 38) 

Figure 17.13: Property Counterexample for Non-SSL Client Server Entities - 
Denial of Service Attack is recognized and communication is stopped 

49 


	1 Introduction
	The RSSR Research Project
	1.2 MBV using Model Checking and the FMF

	The FMF Verification Methodology and Rationale
	2.1 Propagation of Verification Results
	2.1 1 Verification Values
	2.1.2 Confidence Ratings

	2.2 Integrating FMF with other RSSR Instruments

	Modeling the SSL Communication Protocol
	Results of SSL Communication Protocol Verification
	5 Conclusion
	References
	Appendix A: Promela Code Excerpts
	Appendix B: SPIN Output for Verification Results



