
Addressing Software Security and Mitigations in the Life Cycle

David Gilliam & John Powell
California Institute of Technology, Jet

Propulsion Laboratory
david.p.ailliam@i pl.nasa.gov,
j ohn.d.powell@,i~l .nasa. aov

Abstract

Traditionally, security is viewed as an
organizational and Information Technology (IIJ
systems function comprising of Jirewalls,
intrusion detection systems (IDS), system
security settings and patches to the operating
system (OS) and applications running on it.
Until recentIy, little thought has been given to
the importance of security as a formal approach
in the software life cycle. [I] The Jet Propulsion
Laboratory has approached the problem through
the development of an integrated formal
Software Security Assessment Instrument (SSAI)
with six foci for the software life cycle.

1. Introduction

The NASA Office of Safety and Mission
Assurance (OSMA) has funded the Jet
Propulsion Laboratory (JPL) with a Center
Initiative, “Reducing Software Security Risk
through an Integrated Approach” (RSSR), to
address this need. The Initiative is a formal
approach to addressing software security in the
life cycle through the instantiation of a Software
Security Assessment Instrument (SSAI) for the
development and maintenance life cycles.

This SSAI, to date, has six elements: 1) a
Vulnerability Matrix (VMatrix), 2) a Model-
Based Verification (MBV) instrument with a
Flexible Modeling Framework (FMF) that uses
Model Checking and the SPIN model checker to
check for properties in the requirements
specifications that lead to vulnerabilities or
unwanted exposures; 3) a Property-Based Tester
(PBT) for JAVA and C Code for verification of
security properties to verify the code that
violations of these properties have not been re-
introduced into it; 4) a Software Security
Checklist (SSC) having two phases: Phase 1
addresses the development and maintenance life

Eric Haugh & Matt Bishop
University of California at Davis

haunhOcs .ucdavis .edu,
bishop@,cs.ucdavis.edu

cycles, and Phase 2 addresses the external
release of software; 5) a list of Security
Assessment Tools (SAT’S); and 6) Formal
training for software and system engineers on
software security and the use of these and other
tools and instruments in the life cycle.

2. Vulnerability Matrix

The VMatrix is a vulnerability database
whose purpose is to provide information about
various vulnerabilities including exploits used to
gain access to systems, how to protect against
the exploits and the Common Vulnerabilities and
Exposures (CVE) listing. The information is
being transferred to the UC Davis Database of
Vulnerabilities, Exploits, and Signatures
(DOVES) where it will be maintained and
updated as new exploits are discovered. This
information is used to extract properties and
requirements that express potential network
vulnerabilities. These properties can then be
utilized by the PBT and the FMF.

3. Security Assessment Tools (SATs)

The SATs are a collection of publicly
available software security code checking tools
available on the Internet that can be used to test
for potential weaknesses in software code. The
SATs are updated as additional tools become
available.

The SATs are classified and grouped
according to purpose and life cycle use.
Included on the web site is a description of each
tool and its intended application. Additionally,
each tool’s advantages and limitations are
provided. Alternate tools are also included in
this assessment including links showing where to
obtain the tool.

http://pl.nasa.gov
mailto:bishop@,cs.ucdavis.edu

Process P 1 Process P2

Figure 1 : Concurrent Processes

4. Model Checking (MC) and the
Flexible Modeling Framework
(FMF)
Software model checkers automatically

explore all paths fiom a start state in a
computational tree that is specified in an MC
model. The computational tree may contain
repeated copies of sub-trees. State of the art
Model Checkers such as SPIN exploit this
characteristic to improve automated verification
efficiency. The objective is to verify system
properties with respect to models over as many
scenarios as feasible. Since the models are a
representation of all functional capabilities under
analysis, the number of feasible scenarios is
much larger than the set that can be checked
during testing. Model Checkers differ fiom
traditional formal techniques by the following
characteristics:

Model checkers are operational as opposed
to deductive

0 Model checkers provide counter examples
when properties are violated (error traces)

0 Their goal is oriented toward finding errors
as opposed to proving correctness since the
model is correct
For example, consider a software system

containing two concurrent processes with three
states each. (See Figure 1) Process 1 (Pl) is
driven by an “X” event or input and process 2
(P2) is driven through its states by a “Y” event/
input. A model checker will automatically
explore all possible paths through this system to
determine if a given system property holds.

Testing of concurrent software systems
quickly become infeasible as:

The possible number of concurrent
processes increases
The hnctionality in one or more processes
grows
The interactivity between or complexity of
one or more processes increases

...

Processes P 1, P2

Figure 2: Interleaving Concurrent Processes

This is largely due to the exponential growth in
the operational state space of the software system
in response to any one of the above stimuli.

This phenomenon is also, to a lesser degree,
a limitation specific to model checking referred
to as the state space explosion problem. [2]
Similar to the growth of the operational space
mentioned above, the state space that a model
checker must search to verify properties grows at
an exponential rate as the model of the software
system necessarily becomes more detailed.
Continuing with the example fiom figure 1,
Figures 1 through 3 illustrate how the state space
grows at a rate of m” where m is the range of
possible values a variable may assume and n is
the number of variables in the model.

Figure 3: State Space

Despite the use of modeling techniques such
as abstraction and homomorphic reduction, it is
infeasible to verify many software systems in
their entirety though model checking that are
more than “moderately” large or complex.

An innovative verification approach, which
employs MC as its core technology, is offered as
a means to bring software security issues under

2

Figure 4: Model Component Combination Tree I
formal control early in the life cycle. [3,4] The
FMF seeks to address the problem of formal
verification of larger systems by a divide and
conquer approach. [5] It accomplishes this by
verifying a property over portions of the system,
then incrementally inferring the results over
larger subsets of the entire system. As such, the
FMF is: 1) a system for building models in a
component based manner to cope with system
evolution over time and, 2) an approach of
compositional verification to delay the effects of
state space explosion. This methodology allows
property verification results of large and
complex models to be examined and
extrapolated appropriately. (See Figure 4)

Modeling in a component-based manner
involves building a series of small models, which
later will be strategically combined for system
verification purposes. This strategic combination
correlates the modeling function with modem
software engineering and architecture practices
whereby a system is divided into major parts,
and subsequently into smaller detailed parts, and
then integrated to build up a software system.
An initial series of simple components can be
built when few operational specifics are known
about the system. However, these components
can be combined and verified for consistency
with properties of interest such as software
security properties.

The approach of compositional verification
used in the FMF seeks to verify properties over
individual model components and then over
strategic combinations of them. The goals of
this approach are to: 1) infer verification results

over systems that are otherwise too large and
complex for MC from results of strategic subsets
(combinations) while minimizing false reports of
defects; 2) retain verification results from
individual components and component
combinations to increase the efficiency of
subsequent verification attempts in light of
modifications to a component.

FMF is being used to verify a portion of
certificate handling of the Secure Sockets Layer
(SSL) protocol as a demonstration of the
modeling framework. SSL is designed for
securing network communications. It provides
the capability for authenticating communicating
partners.

5. Property-Based Testing

Property-based testing is a testing technique
designed to detect violations of given properties.
In this context, the properties desired are
obtained flom the checklist, or from the
properties used in the model checking. The
properties are viewed as invariants that are to
hold as the program executes. PBT views the
execution of the program as a sequence of state
transitions. If any of these transitions cause a
violation of the properties, PBT causes an error
message to report the failure (see Figure 5
below).

First, the properties are expressed in a low-
level testing language called TASPEC. A tool
called the instrumenter takes these properties and
a program to be tested. The instrumenter then

3

Figure 5 : PBT Process

modifies the program so that, when any event
occurs that affects whether the state of the
program’s execution satisfies the properties, a
text representation of the change in state is
emitted. The instrumented program is then
compiled and executed. After the execution is
complete, the changes of state will have been
saved to a file.

The testers then execute a second program
called the test execution monitor (TEM). This
program is given the properties (in TASPEC)
and the changes of state generated fiom the test
run of the program. The TEM then checks each
change of state to ensure that, if the properties
held when the program began execution, then
they held throughout the execution. If not, the
TEM can determine where in the program the
failure occurred.

PBT is different than formal verification. It
recognizes that implementation difficulties, and
environment considerations, may affect
conformance to the properties (and hence the
security of execution). A key observation is that
testing does not validate that a program will
always meet the properties, unless all possible
paths of execution are traversed. But it does
provide additional assurance that the
implementation is correct, and does satisfy the
properties, when execution follows the tested
control and data flow paths.

Many control and data flow paths are
irrelevant to the program’s satisfying the desired
properties. A technique called dicing [6] creates
a second program that satisfies the properties if,
and only if, the original program satisfies those
properties. The second program contains only
those paths of control and data flow that affect
the properties. This focuses the testing on paths
of execution relevant to the security properties,
rather than on all possible paths of execution
(See Figure 6).

The property-based tester currently handles
Java programs, and has found vulnerabilities in
several programs, including a server of several
thousand lines. The instrumenter is language
dependent because it must parse the program to
be tested in order to add the appropriate code to
print the relevant changes of state. The current
instrumenter handles Java, and one currently is
being written for C.

Figure 6: PBT Model

6. Software Security Checklist (SSC)

The SSC has two foci: 1) a checklist for
software developers to write secure code for
applications (including tools to integrate security
into the various stages of the software life cycle);
and 2) a checklist to verify that software released
by NASA does not allow unauthenticated access
into NASA networks, or provide other
information about NASA’s, processes, systems,
networks, or other sensitive data (such as IP
Address space, HR data, or processes that can be
exploited).

A checklist for the development and
maintenance life cycles begins with system

4

Software Vulnerabilities Expose IT Systems and
re to Security Risks
uce Security Risk in Software and
ct IT Systems, Data, and Infrastructure

.Security Training for System Engineers and
Developers
‘Software Security Checklist for end-to-end
life cycle
.Software Security Assessment Instrument
(SSAI)

Security Instrument Includes:
.Security Checklist

.Vulnerability Matrix

.Property-Based Testing And-2 Dsarvaedattacksnabeensepnmthewlld ------ And-1
~ ~ f C r V n r m t n X / w T L h ~ -

Technology lntegahon

.Collection of security
tools

Figure 7: Integrated Use of the Security Assessment Instrument

inception and continues through retirement
known as a ‘womb to tomb’ process. It begins
with a pre-requirements study to be able to elicit
the appropriate requirements fiom the
stakeholders and applicable documents,
standards, regulations, laws, etc. and specify
them; and it ends with decommissioning
software and systems and the impact on the
computing environment, including re-
verification of systems from which critical
software has been decommissioned. In between
there are a number of critical design and
programming issues as well as tracing security
requirements, and performing test and
verification of them, including the maintenance
life cycle phase.

A checklist for the external release of
software (i.e., software that is developed for
release external to the organizational
environment) is specified by NASA in NPG
221 0, NASA Procedures and Guidelines:
External Release of NASA Software.”[7]
However, there is no guidance provided on the
contents of the checklist or a release authority
process. The research initiative delivered to
NASA a draft of a potential checklist and release
authority process to be used for the external

release of software. A process for evaluation of
code for potential security issues was also
provided. The evaluation of the source code
included looking for problems that might expose
NASA and NASA partners to potential security
exposures. Included in the release checklist is a
sample set of PERL scripts to aid in looking for
potential items in the software that may violate
security requirements or present security risks
such as embedded Center IP addresses, Human
Resource information like phone numbers, use of
known vulnerable libraries, and weak
subroutines.

7. Software Security Assessment
Instrument (SSAI)

This collection of tools and utilities,
collectively named the Software Security
Assessment Instrument (SSAI), can be used
individually or in concert to ensure the security
of network aware application software and
systems as shown in Figure 7 below. Working
together, the various tools and utilities provide a
distinct advantage whereby each tool’s output
may be used for input for the other tools. The
use of these tools and instruments results in a

5

more comprehensive assessment of the software
undergoing analysis.

In response to NPG 7120.5B, “NASA
Program and Project Management Processes and
Requirements,” [SI and NPG 2810.1, “Security
of Information Technology,” [9] an effort is
underway to integrate security into JPL’s project
life cycle. The SSAI along with experts in the
use of these instruments and tools will be made
available to projects as part of a security risk
assessment for the project life cycle.

In addition, the instrument will be evaluated
for use in the Deep Space Mission Systems
(DSMS). An evaluation of the applications and
protocols used to support flight and ground
support systems will be assessed for further
piloting of the SSAI and integrating the
technology into this environment.

This instrument also has the potential for
application to domain areas beyond software
security such as software risk management.
Exploration of extension of the instrument is also
being explored.

Training courses for project managers and
software developers are currently being
developed to integrate security and elements of
the SSAI into the project life cycle. In addition,
an approach is being pursued to have available at
the various NASA Centers domain experts to
assist projects with software and system security
and methods to identify and mitigate risk in the
project life cycle. It is hoped through these
efforts that NASA will be able to produce
software that has a higher level of assurance that
security defects and unwanted exposures are not
present in the final product.

8. Conclusion

A unified approach to software security has
the potential to identify software security
weaknesses. An approach that addresses security
issues early in the life cycle increases that
potential. Unifying the model-based approach
with property-based testing through the use of
temporal logic properties provides consistent
verification across life cycle phases. The
VMatrix provides the basis for instantiating the
temporal logic properties for both MBV and
PBT. Other security assessment tools like fault
injection and fault trees can be used
cooperatively or independently to address other
software security concerns. The software
security checklist identifies the critical areas in
security that need to be addressed in the life

cycle. The outcome is an integrated approach to
reducing sofiware security risk.

9. Acknowledgements

The research described in this paper is being
carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a
contract with the National Aeronautics and
Space Administration.

10. References

[l] C. Mann. “Why Software Is so Bad,” Technology
Review (July/August 2002).

[2] G. Holzmann. Design and Validation of Computer
Protocols. Prentice Hall 1990; ISBN: 0135399254

[3] D. Gilliam, J. Kelly, J. Powell, M. Bishop.
“Development of a Software Security Assessment
Instrument to Reduce Software Security Risk”
Proceedings of the Tenth IEEE Intemational
Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, Boston, MA, pp 144-
149.

[4] D. Gilliam, J. Powell, 1. Kelly, M. Bishop.
“Reducing Software Security Risk Through an
Integrated Approach”, IEEE Goddard 26th Annual
Software Engineering Workshop.

[5] Component Based Model Checking, J. Powell, D.
Gilliam. Proceedings of the 6th World Conference on
Integrated Design and Process Technology, June 23-
28, Pasadena CA, p66 & CD

[6] M. Weiser. “Program Slicing,” IEEE Transactions
on SofWare Engineering SE-lO(4) pp. 352-357 (July
1984).

[7] NPG 2210. “NASA Procedures and Guidelines:
Extemal Release of NASA Software,” January, 2002,
August 26, 1999,
http://nodis3.gsfc.nasa.aov/librarv/lib docs.cfm?
range=2

[SI NPG 7120.5B. “NASA Procedures and
Guidelines: NASA Program and Project Management
Processes and Requirements,” November, 2002,
http://nodis3.esfc.nasa,gov/noe imdN PG 7120 005
B /N PG 7120 005B .odf

[9] NPG 2810.1. “NASA Procedures and Guidelines:
Security of Information Technology,” August, 1999,
http://nodis3. esfc.nasa.gov/library/disolayDir.cfm?Inte
mal ID=N PG 2810 0001 &age name=main

6

http://nodis3.gsfc.nasa.aov/librarv/lib
http://nodis3.esfc.nasa,gov/noe
http://nodis3

