
Model Based Verification of the Secure Socket Layer (SSL) Protocol for
NASA Systems

John D. Powell & David Gilliam

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Rive

Pasadena, CA 9 1 109
M/S 125-233

Phone: 818-393-4355

Focus Issue:
System security and information assurance

Abstract
The National Aeronautics and Space

Administration (NASA) has tens of
thousands of networked computer
systems and applications. Software
Security vulnerabilities present risks
such as lost or corrupted data,
information theft, and unavailability of
critical systems. These risks represent
potentially enormous costs to NASA.
The NASA Code Q research initiative
“Reducing Software Security Risk
(RSSR) Trough an Integrated Approach”
offers formal verification of information
technology (IT), through the creation of
a Software Security Assessment
Instrument (SSAI), to address software
security risks. [1,2,3,4,5,6]

The SSAI is composed of 5 parts:
1 . Model Based Verification (MBV)
2. Vulnerability Matrix
3. Security Assessment Tools (SATs)
4. Property Based Testing (PBT)
5. Software Security Checklist (SSC)

This abstract discusses the
verification of the Secure Socket Layer
(SSL) communication protocol as a
demonstration of MBV using the
Flexible Modeling Framework (FMF)
developed by the RSSR initiative.

MBV makes use of discrete finite
models to verify critical system
properties. The FMF is a generic
approach to modeling and verification.
However, the specific MBV and FMF
properties addressed in this abstract
focus on software security pertaining to
the SSL protocol.

Network security properties often
focus on characteristics that are
manifested though the operation of
multiple software components operating
concurrently. The concurrent nature of
the systems results in an operational
space that is too large to verify testing
techniques. MBV with the FMF offers

verification of critical system security
properties early in the development
lifecycle before an implementation
exists. This makes MBV valuable
because software security vulnerabilities
introduced in the early lifecycle phases
are costly to remove in later phases. A
vulnerability that goes undetected until
after system deployment results in the
addition of cumbersome “patches” to
mitigate the vulnerability. These
“patches” may introduce new
vulnerabilities in addition to mitigating
the ones being corrected.

The MBV technique uses Model
Checking (MC) as a core technology.
Model checkers explore all paths in a
finite state space from a given start state.
The objective is to verify system
properties over all possible system
scenarios. MC provides counter
examples when properties are violated,
which are then used as traces for test
case generation. [7,8,9]

MBV techniques, such as MC, are
not without drawbacks.
0 The inability to evolve a system

model in a timely manner when the
system definition is volatile.
The state space explosion problem.
[lo] The state space that a model
checker searches to verify properties
grows at an exponential rate as the
model becomes more detailed.
The FMF is offered as a means to

bring software security issues under
formal control mitigating the drawbacks
of MC discussed above. The FMF seeks
to achieve this by a divide and conquer
approach. As such, the FMF is a: 1)
System for building models in a
component based manner to cope with
system evolution in a timely manner, 2)
Compositional verification approach to
delay the effects of state space explosion
for larger system models.

0

Modeling in a component-based
manner involves the building of a series
of small sub-models. Then, these
components can be combined and
verified over system properties of
interest in a compositional manner.

The compositional verification
approach used in the FMF seeks to
verify properties over individual model
components and then over strategic
combinations of them. The goals of this
approach are to:
0 Infer verification results over

systems that are otherwise too large
for MC from results of strategic sub-
model combinations.

0 Retain verification results from
individual components and
component combinations to increase
the efficiency of subsequent
verifications.
Figure 1 shows how SSL model

components can be mixed and matched
within the FMF to verify correctness
properties over multiple variations of
SSL behavior. Development of a single
model containing all possible behaviors
can be counter-productive. Combining

behaviors that do not reasonably co-exist
in a system produces many false
property violations. These will flood the
analyst with so much data to review that
the timeliness of verification results will
be compromised. Further, upon finding a
valid violation of a system property the
counterexample will often be convoluted
by irrelevant interim model transitions.
Isolating and recommending corrective
action becomes a long and tedious
analysis task. When the model is
separated into variations through the use
of FMF, valid verification knowledge
can be easily extracted from the pattern
of (non-) violations over the model
variations. The FMF approach is a
means for determining critical system
hctionality with regard to software
security properties thereby isolating
vulnerable areas for corrective actions.
Finally, in an open system, such as the
SSL protocol and its environment, an all
encompassing model will unduly stress
the limits of the test platform’s memory
constraints due to excessive state space
explosion without the use of the FMF.

Four SSL correctness properties

SSLSecret c Func.

Each communicating entity Man in the Replay
No Attack Middle Attack will eventually achieve and

execute the exchange of secure
communication
Signed SSL Entities No
(Certificates) Violation
Unsigned SSL Entities No No
(No Certificates) Violation Violation

No No
Non-SSL Client Server Entities Violation Violation

Attack

Violation Violation

Violation

Violation

were verified over the FMF model
components. They are 1) The SSL
secure communication shall initialize
eventually unless less an attack has
successfully inserted itself in such a
manner that the resulting secure
communication will be compromised, 2)
Once secure communication is
establishhed secure contacts and
responses will always be reached, 3) A
secure message that has been intercepted
shall be detected and not accepted by the
SSL recipient of the secure message, 4)
Under the rules for attacks, an attack
may only read unsecured messages or
secured messages if the SSL secret has
previously been captured. 5) Securely
communicating entities shall not reveal
their secret even during the handshake
initialization

The significant verification results
shown in Table 1 indicate that:
1. SSL entities communicate correctly

when no attack is present
2. Only the SSL entities using signed

certificates recognized a Man-in-the-
Middle Attack, aborting before
exposing secure communication.

3. The Replay Attack failed to access
secure communication

4. The DoS Attack did deadlock the
system but did not capture secure
communication

DoS
attack

Violation

Violation

Violation

Acknowledgement
The work described in this abstract

was carried out at the Jet Propulsion
Laboratory, Califomia Institute of
Technology, under a contract with the
National Aeronautics and Space
Administration.

References
[l] D. Gilliam, et.al., “Reducing Software Security
Risk Through an Integrated Approach,” Proc. of the
Ninth IEEE 1nt.Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (June,
2000), Gaithersburg, MD, pp.141-146.
[2] G. Fink, M. Bishop, “Property Based Testing: A
New Approach to Testing for Assurance,” ACM
SIGSOFT Software Engineering Notes 22(4) Jul 1997.
[3]M. Bishop, “Vulnerabilities Analysis,” Proceedings
of the Recent Advances in Intrusion Detection (Sep.
1999).
[4] J. Dodson, “Specification and Classification of
Generic Security Flaws for the Tester’s Assistant
Library,” M.S. Thesis, Dept. of Computer Science,
Univ. of Califomia at Davis, Davis CA (June 1996).
[5] D. Gilliam, et. al., “Development of a Software
Security Assessment Instrument to Reduce Software
Security Risk” Proc. of the 10th IEEE Int. Workshops
on Enabling Technologies: Infrastructure for
Collaborative Enterprises, Boston, MA, ppl44- 149.
[6] D. Gilliam, et. al., “Reducing Software Security
Risk Through an Integrated Approach”, IEEE
Goddard 26th Software Engineering Workshop
[7] W. Wen and F Mizoguchi. Model checking
Security Protocols: A Case Study Using SPIN, IMC
Technical Report, November, 1998.
[8] J. Callahan, et. al. “Generating Test Oracles via
Model Checking,” NASNWVU Software Research
Lab, Fairmont, WV, Tech. Rpt #NASA-IVV-98-15.
[9] P. E. Ammann, P. E. Black and W. Majurski.
“Using Model Checking to Generate Test
Specifications,” 2nd International Conference on
Formal Engineering Methods (1998) pp. 46-54.
[lo] G. Holmann. Design and Validation of
Computer Protocols. Prentice Hall 1990; ISBN:
0135399254.

