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AAS 03-630 

SIMPLE CONTROL LAWS FOR LOW-THRUST ORBIT 
TRANSFERS 

Anastassios E. Petropoulos* 

Two methods are presented by which to determine both a thrust direction and when to 
apply thrust to effect specified changes in any of the orbit elements except for true anomaly, 
which is assumed free. The central body is assumed to  be a point mass, and the initial and 
final orbits are assumed closed. Thrust, when on, is of a constant value, and specific impulse 
is constant. The thrust profiles derived from the two methods are not propellant-optimal, 
but are based firstly on the optimal thrust directions and location on the osculating orbit for 
changing each of the orbit elements and secondly on the desired changes in the orbit elements. 
Two examples of transfers are presented, one in semimajor axis and inclination, and one in 
semimajor axis and eccentricity. The latter compares favourably with a propellant-optimized 
transfer between the same orbits. The control laws have few input parameters, but can still 
capture the complexity of a wide variety of orbit transfers. 

INTRODUCTION 

With the aim of providing both simple approximations to, and good initial guesses for, propellant- 
optimal, low-thrust orbit transfers which involve specified changes in all orbit elements except true 
anomaly, we develop control laws which have but few input parameters yet capture the complexity 
of a wide variety of orbit transfers. As approximations, the control laws provide mission designers 
with rapid estimates of propellant requirements and times of flight, as well as the trade-offs between 
the two. In providing initial guesses for optimisation, the control law would be particularly useful 
for the case where large numbers of revolutions are required. Both continuous and intermittent 
thrusting are permitted for the transfer, but no constraints are placed on when thrusting can occur. 
When non-zero, the thrust is assumed to be constant, and the specific impulse is similarly constant. 
The central body is modelled as a point mass, and the initial and final orbits are assumed closed. 
No perturbing forces are considered. 

The control laws build on the ideas of Kluever’, and Gefert and Hack2, who “blend” the 
instantaneously optimal thrust directions for changing each of the orbit elements. In this paper we 
develop two concepts for obtaining control laws, and provide examples of such control laws. The 
concepts are both based on knowledge not only of the optimal thrust direction for changing each 
of the orbit elements, but also on knowledge of the optimal location on the osculating orbit for 
effecting such a change, and the corresponding maximum rate of change for each orbit element. The 
first concept may be termed a “time-to-go” concept, as it is based on conservative lower bounds on 
the times needed to effect the desired changes in each of the orbit elements. The second concept 
relies on what may be termed a “proximity quotient,” that is, an assessment of the proximity to 
the final orbit, and its time rate of change. 

The first of the following sections presents analytic expressions for the maximum rates of change 
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for each of the orbit elements, the optimal thrust directions, and the optimal orbital locations 
for effecting change in the orbit element. In the case of argument of periapsis, in-plane thrust is 
assumed. The second and third sections describe the time-to-go concept and the proximity quotient 
concept, respectively, along with numerical examples. In the fourth section, one of the numerical 
examples is compared with a propellant-optimal transfer between the same orbits. 

ANALYSIS 

We commence with Gauss’s form of the variational equations for the orbit:3 

r sin(@ + w) 
h sin i f h  

+ w) 
f h  h 

rs in(@+ w)cosi 1 
f h  [-P cos @fT + ( p  + r )  sin @fee] - h sin i 

2a2 - (esin@fT + P f e )  
h r 

h 1  
- r2 + a [pcos@fT - (p+r)sin@fe] 

The nomenclature for these and subsequent equations is explained in the Notation section. The 
components f r ,  fe ,  and f h  of the thrust acceleration are given in terms of the thrust acceleration 
and the thrust angles as: 

fT  = fcospsincr 

fT  = f sinp 
fe = f C O S p C O S f f  

It is often of interest to attain prescribed changes in the elements except for true anomaly. That 
is, the position of departure from the initial and the position of arrival onto the final orbit are often 
immaterial. With this in mind, we concern ourselves only with the first five variational equations. 
For each orbit element, we derive the thrust direction which maximises the rate of change of that 
orbit element at any given position on the orbit, the position (or positions) on the orbit where 
that maximum rate is at its maximum, and the value of the corresponding rate of change in the 
orbit element. As we shall note in a later subsection, the thrust direction and the rate of change 
for maximally increasing an orbit element are simply related to those for maximally decreasing the 
orbit element, so for simplicity we will develop only the maximal increase case in detail. 

For a particular orbit element, the thrust direction maximising its rate of change is found by 
simply setting to zero the partial derivative of the right hand side of the variational equation for 
that, element with respect to the thrust angle. To find the location on the orbit where the rate of 
change is maximised, the partial derivative is taken instead with respect to the true anomaly. This 
procedure is described more explicitly in the subsection for the argument of periapsis. 

Semimajor Axis 

It is well known that thrust along the velocity vector maximises the rate of increase of semimajor 
axis, while thrust against the velocity maximises the rate of decrease of semimajor axis. The 
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two rates are equal. The greatest maximum rate of change can be achieved at periapsis. These 
observations arise immediately from Eq. (4) and various well-known relations for conic orbits. 
Specifically, we may write for the maximum rates of change and the related thrust angle: 

a x  = Y 
ax, = 0 

2a2v 
P 

ax = - f sin(a - 7) 

ex, = o (11) 

Of course, the out-of-plane thrust is zero. 

Eccentricity 

Various authors have derived the optimum thrust angle for changing eccentricity:2 

Rsina, = e( l  + ecos8)sine 
Rcosa, = (1 + - (1 - e2) 

or, equivalently 

Rsina, = sine 
Rcosa, = cosE+cosB 

We add here a derivation of where on the orbit a local maximum is achieved in e .  From Eq. (5) we 
may easily obtain the partial derivative 

By simple inspection of Eqs. (5), (12), (13), and (14), we see that 6 = 7r yields a local maximum of 
e,  over e. It is difficult to determine analytically whether other maxima exist, but physical insight 
and a small numerical study suggest that the local maximum at apoapsis is the only one, and hence 
the global maximum. Thus we may write 

2Pf exx = - 
h 

Argument of Periapsis 

Due to the complexity of the right hand side of Eq. (3), we shall derive here only the optimum 
in-plane thrust angle and associated optimum orbit location for changing the argument of periapsis. 
That is, we assume that fh = 0, meaning that the orbit plane remains unchanged. Equation (3) 
may thus be written 

dw 1 
- = - [ - p  cos 8 fT + ( p  + T )  sin e fe] 
dt eh (17) 

The thrust angle giving the maximum rate of change of w is found by solving for a the equation 

dW 
d a  

= O  - 
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and checking whether the resulting values of a give maximum or minimum w in Eq. (17). After a 
brief derivation, we find 

Rsina, = -pcos9 
Rcosa, = (p+ r )  sin9 

Similar expressions for a, are given by Gefert and Hack.2 The angle ax gives the maximum G, 

It is easy to show that the minimum w is given as w, = -wx,  with the corresponding thrust angle 
a, = a, + 7r. 

To find the true anomaly where w, reaches its maximum value, b,,, we first rewrite Eq. (17) in 
a more convenient form: 

w = e sin(e - 4) (22) eh 
where 

A = dp2 sin2 a + (p + r ) 2  cos2 a 

t an4  = P t a n a  
P + T  

The partial derivative of w with respect to  9 is then obtained as 

Setting the right-hand side of Eq. (25) equal to zero will satisfy the necessary condition for the true 
anomaly where 3 is greatest. This necessary condition, together with the optimal thrust angle of 
Eqs. (19) and (20), and the knowledge that G, = -wx,  may be solved, after various manipulations, 
to yield the cubic equation 

e2 cos3 e,, + 3e cos2 e,, + (3 + e2) cos e,, + 2e = o (26) 

Analytic solutions being available for cubic equations, we find that there is one real root for cos e,,, 
which is given by 

Equation (27) thus provides the true anomaly where wx is at its maximum, that is, where w can 
best be changed. The value of w,, is obtained by substituting for e in Eq. (21) from Eq. 27): 

w,, = w,(e = e,,) (28) 

It may be possible, if more involved, to include in a similar vein the effect of the out-of-plane thrust 
on the argument of periapsis. 

Inclination 

Clearly from Eq. (2), the optimum thrust angle for increasing the inclination is 
7r ,Bx = sgn[cos(9 + w) ] -  
2 

4 



which gives the maximum i as 

f *. TI cos(@ + w)I 
h 

2, = 

By setting &/a8 = 0, we find the necessary condition for the optimum true anomaly at which to 
change i: 

The quadrant uncertainty for 8 in Eq. (31) is resolved by noting that the quadrant giving the 
maximum T yields the maximum iX in Eq. (29). A short derivation leads to the choice of quadrant 
as: 

sin(8, + w )  = -e sin w (31) 

sin ox, = - [e cos w - sgn* (cos w) J C F Z Z ]  sin w (32) 

cos e,, = -e sin2 w - 1 cos w l d 1 -  e2 sin2 w 
sgn*(cosw) = { z;(cosw) if cosw # 0 

if cosw = 0 

The corresponding maximum value of I ,  is then found to be 
Pf 

2 x x =  h(J1-e2sin2w-elcoswl) 

Longitude of the Ascending Node 

The analysis for R is analogous to the one for inclination, given the similar functional form of 
the variational equations, (1) and (2), for these elements. The following results are obtained: 

P x  = 

fix = 

cos(8, + w )  = 

case,, = 

fix, = 

sin&, = 

7T sgn[sin(8 + w)]- 2 

f T I  sin(8 + w)l 
h sin i 

-e cos w 

[e sin w - sgn* (sin w)J1- e2 cos2 w cos w 1 (39) 

(40) 

(41) 

-ecos2w- IsinwlJl-e2cos2w 
Pf 

h sin i (dl - e2 cos2 w - el sin wI) 

where the sgq)  function is defined in Eq. (34). 

Maximum Rates of Decrease of Orbit Elements 

In the analysis for the argument of periapis, we noted that at any point on the orbit, the sign 
of w for in-plane changes may be reversed by thrusting in the opposite direction. By examining the 
variational equations (1)-(5), this is immediately seen to be true also in the full three-dimensional 
case, and also for the other four orbit elements. Thus we may write 

den = - de, 
denn = - de,, 

acen  = acex+7T 

sin,&:, = - sin&, 

where ce represents in turn each of the five orbit elements R, i, w, a, and e .  
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TIME-TO-GO CONCEPT 

Four guiding principles are used in the time-to-go concept. The first is one of “effectivity.” 
When thrusting is deemed insufficiently effective, thrust is turned off. For example, if we are to 
change the semimajor axis, without regard for the other elements, the most effective place to do so 
is at periapsis [Eq. (ll)]. As the spacecraft proceeds on the transfer orbit, thrust is discontinued if 
the effectivity of thrust drops below some specified cut-off level when compared with the effectivity 
at the osculating periapsis. Specifically, the effectivity is defined as 

Gefert and Hack’ also introduced this quantity, but only for the apoapsis radius, calling it an 
efficiency factor. For changing other orbit elements, similar cut-off effectivities are set for the orbit 
elements in question. The effectivity at any point on an orbit may be immediately computed based 
on the analytic expressions for dex and de,,. The effectivity is the first input to the time-to-go 
control law. 

The second principle is one of overshooting. It may be beneficial to change an orbit element 
beyond its target value in order to make it easier to perform required changes in other orbit 
elements. An obvious example is that of changing inclination and semimajor axis concurrently. For 
large enough inclination changes, less propellant is required overall if the orbit is first enlarged, the 
inclination change performed at this enlarged orbit, and finally the orbit reduced to the desired 
size. Similar trade-offs occur with some of the other orbit elements. The logic for determining 
when overshooting should occur is based on the changes needed in the elements and the rates of 
change achievable for these elements on the osculating orbit. In particular, for each orbit element 
that must be changed, we estimate a lower bound for the minimum time needed: 

Taking a transfer in inclination and semimajor axis for example, if >> tsane, then most of 
the thrust is used to change a in the initial portion of the transfer. In the middle portion of the 
transfer, when tsine $ tsane, most of the thrust is used to change i. The numerical meaning of “>”, 
“3” and  n no st" is controlled by parameters provided as input to the control law. The maximum 
permitted overshoot is also an input parameter to the control law. 

The third principle, employed towards the end of the transfer when t6Ene is roughly equal for 
each of the orbit elements, is one of thrusting in such a direction that each of the elements has 
an equal “time-to-go” to its target value. The fourth principle is one of determining a thrust 
direction when the previous three principles would call for conflicting thrust directions. In the 
following numerical examples of this section, the fourth principle need not be invoked, as the thrust 
directions for changing the two orbit elements are uncoupled. 

Numerical Example: Transfer in a and i Using Time-to-Go 

For a satellite in orbit around the Earth, an inclination change of almost 90” is sought together 
with an increase in semimajor axis. The other elements are considered free. The relevant initial 
orbit elements are listed in Table 1, which includes the free e and w because their values impact 
the time-to-go control law. The values of i and e are small, but non-zero, to avoid the the well- 
known singularities in the variational equations when values of zero are attained. The desired 
final inclination and semimajor axis values are 90” and 10000km, respectively, as shown in Table 1. 
Table 2 lists the thrust, specific impulse, and initial spacecraft mass. A rather high thrust-to-weight 
ratio is used, firstly to ease the computational burden of integrating many revolutions around the 
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central body, and secondly to  simplify the graphical presentation of trajectory data (for example, 
to permit consecutive revolutions on a trajectory plot to be discernible). 

Table 1 

INITIAL AND TARGET ORBITS: ai TRANSFER 
Inclination 0.03" 90" 
Semimajor axis 7452.7 km 10000 km 
Periapsis altitude 1000 free 
Eccentricity 0.01 free 
Argument of periapsis 0" free 

Table 2 

THRUST, SPECIFIC IMPULSE AND INITIAL SPACECRAFT MASS 

Thrust 9.3 N 
Specific Impulse 3100 s 
Initial spacecraft mass 300 kg 

Figures 1 and 2 show the time histories of a and i, respectively, based on a time-to-go control 
law. The semimajor axis increases rapidly, so that most of the plane change can be accomplished at 
larger orbits where it is more efficient to change the inclination. The control law input parameters 
determine the steepness of the initial rise and final fall in a, the height and duration of the plateau in 
a, the size of the small drops in a on the plateau, the corresponding shallow-steep-shallow increase 
in i, and the presence of coast arcs, where neither element changes. Slightly bigger increases in 
inclination are seen near apoapsis, rather than near periapsis, since the eccentricity is non-zero and 
it is more efficient to change inclination at apoapsis for the case w = 0. The coast segments are 
rather small, because of the low a and i effectivity cutoffs of 0.8 and 0.5, respectively - these are 
low given the small eccentricity. The target values of a and i are met to one part in lo4, and the 
final eccentricity and argument or periapsis are 0.12 and 111.l0, respectively. The final spacecraft 
mass is 200.5kg, and the flight time 4.65 days. The transfer orbit is shown in Fig. 3. 

Numerical Example: Transfer in a and e Using Time-to-Go 

The time-to-go concept is now applied to a satellite in orbit around the Earth, where an increase 
is sought in both semimajor axis and eccentricity, as shown in Table 3. The thrust and mass 
parameters are again the ones in Table 2. 

Table 3 

INITIAL AND TARGET ORBITS: ae TRANSFER 
Semimajor axis 7452.7 km 10000 km 
Periapsis Altitude 1000 km 2621.9 km 
Eccentricity 0.2 0.7 

The time histories of a and e are shown in Figs. 4 and 5 ,  respectively. Effectivity cutoffs are 
set at 0.8 for both orbit elements. As a consequence, most of the thrusting occurs near periapsis. 
The second principle of the time-to-go concept is not invoked, as there is no obvious advantage 
to be had by overshooting in one element to facilitate changes in the other. The fourth principle 
prohibits thrusting at apoapsis, where it is most efficient to  change e, because the necessary thrust 
direction would diminish a, contrary to the desired increase. The third principle blends the optimal 
u and 6 thrust directions so that the estimated time to go for the two elements is equal. 
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Time-to-go control law for transfer in a and i: Time history of i. Periapsis 

Figure 3 Time-to-go control law for transfer in a and i: Trajectory plot. 
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Figure 4 
denoted by *, apoapsis by 0. 

Time-to-go control law for transfer in a and e: Time history of a. Periapsis 
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The target semimajor axis is met within lOkm, and the target eccentricity within 0.01. The 
flight time is 4.923 days, and the final spacecraft mass 278.42kg. These values are shortly compared 
with values obtained with the proximity-quotient concept and with optimisation. 

PROXIMITY-QUOTIENT CONCEPT 

The proximity-quotient concept is essentially a systematic encapsulation of the four principles 
of the time-to-go concept. A proximity quotient is introduced, which judiciously quantifies the 
proximity of the osculating orbit to the target orbit. Here we take the proximity quotient as 

which may be thought of as a “best-case quadratic time-to-go,” in that it captures the best possible 
rate of change for each of the orbit elements over the osculating orbit. The weights, W E ,  are always 
greater than zero, and usually taken as zero or one. Thus, Q is always greater than or equal to 
zero, and our goal in the orbit transfer is to drive it to zero. We note that Q is a function only of 
the five orbit elements, and not of true anomaly or the thrust angles. The summation in Eq. (49) 
is available analytically since analytic expressions have been derived for each or the ex,. Now, the 
time rate of change of Q is simply 

-=&&de dQ aQ 
dt E 

where each of the de are available explicitly from the variational equations (1)-(5). Thus, unlike Q, 
Q depends on the thrust angles. At any point on the transfer, we choose the thrust angles which 
make Q most negative. These angles which minimise Q must be found numerically, as an anlytic 
solution does not appear available. (The numerical search is not excessively time consuming, and 
so may be easily used in a numerical integration of the variational equations.) With these angles, 
we ensure that Q is being sent towards zero as quickly as possible at each instant. 

The concept of effectivity may be applied to Q as well. If the minimum Q, omin, is greater 
than or equal to zero at the current orbit location, then thrust is not applied. Similarly, we can 
cut off the thrust if Qmin is not sufficiently negative, compared, say, with the most negative value 
that could be attained over the entire osculating orbit. A more practical yardstick for the current 
Qmin might be the minimum value attained by Qmin over the preceding revolution. This minimum 
minimum value of Q is easily kept track of in the numerical integration of the variational equations; 
an initial value must simply be computed for the initial revolution. 

There are two complications that have not been excluded analytically, but also which have not 
been encountered numerically. The first is that we have not proven that it is possible to reduce Q 
for any osculating and target orbit combinations. The second is that our control law may pull the 
solution to the wrong local minimum of Q, there being at least two. The first minimum is clearly at 
the target orbit -this minimum is zero, and has a large region of attraction. The second minimum 
is at a = 00, where it is always easiest to change all of the orbit elements. Thus, the solution must 
always be brought into the region of attraction of the minimum at the target orbit, if it every 
wanders into the region of attraction of another minimum. A contour plot of the Q function, for 
the case of a transfer in two orbit elements, helps in visualising the local minima. Figure 6 shows 
such a contour plot for the transfer in semimajor axis and inclination of the preceding section. 
Superimposed on the contour plot is the path taken by the transfer computed with the time-to-go 
control law. The contour lines show that there is a saddle in Q near a = 40000km and i = ~ / 2 .  
The minimum in Q due to the target orbit is to the left of the saddle, while the minimum at infinity 
is to the right of the saddle. In this case the time-to-go control law takes the transfer directly into 
the region of attraction of the correct local minimum. We now demonstrate the proximity-quotient 
control law with a transfer in semimajor axis and eccentricity. 
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Contours of the proximity quotient for the ai transfer of Tables 1 and 
The transfer computed with the time-to-go control law, shown in Figs. 1-3, is 
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Numerical Example: Transfer in a and e Using the Proximity Quotient 

We consider here the same transfer in semimajor axis and eccentricity as we did with the time- 
to-go control law. The weights for semimajor axis and eccentricity, W, and We, are set to one, 
and the other weights to zero. A sliding effectivity cutoff is used for Qmin: It remains at 0.6 for 
a < 23000km and then drops gradually to zero as a approaches the target value of 30000km. The 
effectivity cutoff controls the number of revolutions and time needed for the transfer. 

Figures 7 and 8 show the variation in semimajor axis and eccentricity with true anomaly. The 
transfer itself is plotted in Fig. 9. The transfer takes 19.63 revolutions, 4.50 days, and has a final 
mass of 280.96kg. Figure 10 shows the a contour plot of the proximity quotient for this transfer, 
as well as the path taken by the transfer in ai-space. 
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Figure 7 
true anomaly. 

Proximity-quotient control law for transfer in a and e: a as a function of 

COMPARISON WITH OPTIMISED TRANSFER 

For the purposes of assessing the efficacy of the new control laws, we study here the same transfer 
in semimajor axis and eccentricity as in the previous two sections. We seek to maximise the final 
spacecraft mass, and constrain the flight time to be equal to the transfer time of the time-to-go 
case (4.923 days). The optimisation software used is based on the static/dynamic control (SDC) 
a lg~r i thm.~- -~  SDC best fits into the direct method category, although, unlike other direct methods, 
the explicit time dependence of the optimisation problem is not removed by parametrisation. 

The initial guesses to the optimiser were normally obtained by rather simply applying thrust 
partly along the velocity vector and partly perpendicular to the line of apsides. Several different 
propellant-optimal transfers were found, corresponding to different initial guesses. The different 
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Proximity-quotient control law for transfer in a and e: e as a function of 

Figure 9 Proximity-quotient control law for transfer in a and e: Trajectory plot. 
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Semimajor axis (km) x io4 

Figure 10 Contours of the proximity quotient for the ae transfer of Tables 2 and 3. 
The transfer computed with the proximity-quotient control law, shown in Figs. 7-9, 
is superimposed on the contour plot. 
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Figure 11 SDC-optimised transfer trajectory for the transfer of Tables 2 and 3. 

local optima normally had different numbers of full orbit revolutions, although some local optima 
had the same number of full revolutions. Figure 11 shows the best local optimum obtained for the 
case of 20 full revolutions. The arrows represent thrust. We note that the last thrust occurs near the 
final apoapsis, that is, at 19.5 revolutions. The transfer then continues for almost a full revolution 
without thrusting. The final orbit period is 0.60 days. Table 4 compares the characteristics of this 
optimal transfer with the transfers obtained with the time-to-go and proximity-quotient control 
laws. 

Table 4 

COMPARISON OF ae TRANSFERS 
Time-to-go law Proximity-quotient law SDC-optimised 

Initial mass, kg 300 300 300 
Final mass, kg 278.42 280.96 281.49 
Transfer time, days 4.923 4.50 4.923" 
Number of revolutions 19.84 19.63 20.45" 
Last thrust Revolution 19.84 19.63 19.50 
aLast thrust occurs almost one full revolution (0.6 days) prior thereto. 

As seen in Table 4 and in Figs. 9 and 11, the proximity-quotient transfer is quite similar to 
the optimised SDC transfer. The more heuristic time-to-go control law does not match the SDC 
solution quite as well. Interestingly, the proximity-quotient transfer, like the optimal SDC transfer, 
demonstrates a small overshoot in eccentricity. 
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CONCLUSIONS 

Based on Gauss’s form of the variational equations, we have derived analytic expressions for 
the optimal thrust direction and location on the osculating orbit for changing each of the orbit 
elements except true anomaly. As a consequence, the corresponding rate of change of each orbit 
element is also known anlytically. We capitalise on these the analytic expressions in two control 
law concepts: The time-to-go concept and the proximity-quotient concept. The latter concept 
formalises analytically the heuristics of the former concept, by introducing a function called a 
proximity quotient, which assesses the proximity of the current orbit to the target orbit. In at 
least one test case, that of a transfer in semimajor axis and eccentricity, the proximity-quotient 
approach closely models the optimal transfer. Use of the proximity-quotient approach is expected 
to be fruitful also for more intricate orbit transfers. 
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semimajor axis (m) 
eccentricity 
acceleration due to thrust (m/s2) 
specific angular orbital momentum (mz/s) 
inclination (rad) 
semilatus rectum (m) 
radial distance from central body (m) 
estimated lower bound for the minimum time needed for a change in e (s) 
velocity (m/s) 
unspecified auxilliary function used in specifying 4-quadrant angles 
proximity quotient (2) 
Weight for orbit element e 
orbit element (one of a, e, i, w,  0) 
Angle of the projection of the thrust onto the orbit plane with respect to  the local 
horizon, positive outwards (rad) 
Angle between the thrust and the orbit plane, positive in the direction of the orbital 
angular momentum (rad) 
effectivity factor 
true anomaly (rad) 
gravitational parameter of the two-body system (m3/s2) 
an auxilliary phase angle (rad) 
Argument of periapsis (rad) 
Longitude of the ascending node (rad) 
maximum over thrust angle, or giving said maximum 
maximum over true anomaly of the maximum over thrust angle, or giving said maximum 
minimum over thrust angle, or giving said minimum 
minimum over true anomaly of the minimum over thrust angle, or giving said minimum 
component along the orbital angular momentum vector 
radially outward component 
circumferential component 
target value 
derivative with respect to time 
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