
SMC-IT 2003

JPL

Model Checking Investigations for
Fau It Protect ion System Va I i dat ion

Kevin J. Barltrop
Paula J. Pingree

1

Complexity of software for flight
missions is increasing
- Entry, Descent & Landing on Mars
- Rendezvous with celestial bodies
- Spacecraft Formation Flying
- Rover Surface Operations

The criticality of flight software
operation is increasing for flight
missions

Background

We implement Fault Protection flight
software for robustness and
autonomy in the event of detected
on-board failures or faults
We are capturing software designs
in state-charts and using automated
code generation

Software verification and validation (V&V)
methods and tools must also advance to
keep pace with software development
Traditional methods are being stretched
Formal methods and model checking
offers a powerful technique for software
V&V

We asked.. .

1. Can we apply “lightweight” formal
methods and model checking to
mission flight software verification
at JPL?

2. Can we automate the process?

3. Can we quantify the benefits
compared to traditional verification
approaches?

SMC-IT 2003 2

Requirements

Design

Code

The Approach

Utilization of the Spin model checker with automatically translated state-
charts provided as input by the HiVy tool set

Validation examples selected and scoped to offer maximum demonstration
benefit to flight projects within the capabilities of our R&TD team, tools and
methods

Translation of system design and environment models from Stateflow to
Promela (the input language of Spin), integration of the closed-loop system
including C-code interfaces, specification of Linear Temporal Logic (LTL)
correctness properties to validate, and model checking results with Spin

rraditional S tate-charts Model Checking

Formal (LTL)

Formal (Promela)

Formal Formal

SMC-IT 2003 3

Deep Impact Mission Overview J P ~
Salient Features

Deliver a 350 kg impactor at 10 kmls to open the interior of a comet nucleus.
Target is Comet PlTempel 1 .
Impactor produces crater dependent on comet porosity and strength.
Flyby spacecraft observes impact, crater development, ejecta and final crater with visible and IR multi-
spectral instruments.
On-board autonomous optical navigation used for precise targeting and control of impactor and flyby
spacecraft.
7 month mission duration. Launch: December 31,2004 I Encounter:July 4,2005

Earth
Orbit

-+X

Juk 4.2ODL TemDef 1 Orbit

SMC-IT 2003

ADCS aligns ITS
Control hame wilh

%lalive veloeily AutoNavlADCS
Impactor Release Control

ITM-2 ITM-3 / E-2mn E-2 hr ITM-1 E-24 houm
E-35 min E-9 min ? E-100 min

Flyby SC
Deflection Maneuver

Release + 12 mln

...... _ - _ --.-
el I

Nucleus

-A

FlybySICScbnco
Data Playback at 175 kbps

to 70meter DSS
LOOK-DBCK Science Imaging

To determine the differences between the interior of a cometary nucleus and its
surface.
Determine basic cometary properties by observing how the crater forms after
impact.
To identify materials in the pristine comet interior by measuring the composition of
the ejecta from the comet crater.
Determine the changes in natural outgassing of the comet produced by the impact.
To help discover whether comets lose their ice, or seal it in over time (evidence for
dormancy vs. extinction).
Address terrestrial hazard from cometary impacts

4

Fault Protection Architecture is Primarily J ~ L
Inherited from Previous Missions

Command Manager

uiayr ai I 13.

- Cassini provided the critical
sequencing approach.

I FP Commands 1 SIC Commands

The FP team discussed upgrading the engine to act as a model-based system
- Existing project investment in explicit behavior design was too large to make switching techniques

viable, but model-based algorithms have been implemented as ground tools.

The project chose a compromise to exploit advantages of the two technologies
- Use model-based ground tools for design analysis, and for downstream auto-coding of software

and test scripts.
- Use auto-coding to eliminated the need for a programmers to implement specific behaviors.

I
I
I
I
I
I
I
I
I
1
\

SMC-IT 2003 5

Design Process Relied on
Au to-Ge ne ra t i o n of P rod u cts PL

SMC=

Component and System Level
Failure Modes Analysis Mission Activity Design

Initial Spacecrafl

System Response

System Response
State Charts

-.------

BIT 2003

Spacecraft Dependency Model
Leads to State Chart Designs JPL

Flight System Elements J3WU State Indicator-ut t f Parent Element Mnemonic I needs X Faultcode I PrimeStateName HealthStateName 11
I Child element mnemonic #I ‘ = ’ I I I J rr I Child element mnemonic #2 h I I

Child element mnemonic #3

Child element mnemonic #n

Table 2. Illustration of Corre Actions and Constraints Aflysis \ / Purpose lThe Device Repair Response device functionalitv
/
1

\ f \ after a fault has been detected.
d Prime Computer * Backup Compkter

\
Location

Tiers of 1. Reset 1553 RT
2. If not at encounter
3. Swap to backup electronics

action I \
\ 4. Exhaust

Interfering No
Comments none

\ I Table 3. Tier Description ‘#able \
Table Sue

n
G

Response Chart ID cc

!

: U

RfCmd RfCmd RfCmd

BatCell BatCell Batcell
... RfRate

\

Manually created products based on
system and subsystem interviews

SMC-IT 2003

InputDevPrime

MinDev

SeqldAction2

TimeOfRecovery Dev
k ValueDev

Shared uint8
Shared uint8
Shared uint8
Shared uintl6
Shared uintl6
Shared double
Shared double
Shared uint8

256
4

Auto-generated products from the simplified spacecraft
model and from template. This state information

eventually feeds into the Promela environment model.
7

Testing Prior to Creating Source Code
Relied on Auto-Generation of Products JPL

............................. ...

Initial design testing derives directly from the design tables and model files.
To keep test time reasonable, the Matlab test scripts are restricted to traversing a “high value” subset
of the spacecraft state space.

9 We wish to focus on aspects that are unique to each behavior.
For states that are instances of the same kind of state, the test covers just a subset of those instances.
(e.g., a chart has 64 instance of thermal channels - we explore the first four and last two)
The explored state space is based on classification of state and input variables (selects, masks, events), with
state vector variations limited to at most one member of each class.

At this level we cannot check end-to-end flight system behavior, because the Matlab test harness lacks a
representation for the rest of the flight system.

In a later venue we’ll use our models to auto-generate behavior predicts for activities on various test beds.

System Response
Behavior Sign-off

SMC-IT 2003 a

Automated Test Script Generation

Select Item Value Loop

Event Loop
Mask Loop

Time Loop
I Response Call
end
Behavior Tabulation

end
end

end

Leads to Response Behavior Report

Scope Type Size
Id Local
IsSubResp Local
SysTime Local
SysTimelnput Local
Urgency Local
EnabledActionl Param
EnabledAction2 Param
IdDev Param

uint8
boolean
double
double
uint8
boolean 3
boolean 3
uint8

MaxRetryActionl Param uint8
MaxRetryAction2 Param uint8
TimeoutActionl Param uintl6
TimeoutAction2 Param uintl6
Epoch Persist double
CalledAsSubResponse Shared boolean
FpSeqActive Shared boolean

Shared boolean 4
Shared uint8 4
Shared uint8
Shared uint8
Shared uintl6 4
Shared uintl6 4
Shared double 256
Shared double
Shared uint8

\

Entries in data dictionary
are classified for script
generation according to

naming conventions.

Auto-generated by post-processing tool, but
sign-off on by test engineer. The requirements

checked here feed into the correctness
properties defined for Promela.

/

a

JPL

script from data dictionary
and template.

Exam les:
Select .-) “Select star tracker A
Mask 3 “Don’t power-cycle if is

back-up”
Event + “Delay action if recovery

is in progress”

Req (10) - Fix appropriate element
Applied RespAttEstRepair(1) to no test case
Applied RespAttEstRepair (2) to no test case
Applied RespAttEstRepair (3) to no test case
Applied RespAttEstRepair(4) to no test case
Applied RespGyroRepair(1) to no test case

______________-____________________________

Applied RespGyroRepair(2
, Applied RespGyroRepair (3
Applied RespGyroRepair (4
Applied SeqGyroEscape (1)
Applied SeqGyroEscape (1)
Applied SeqGyroEscape (1)
Applied SeqGyroEscape (1)
Applied SeqGyroEscape (1)

to no test case
to no test case
to no test case

with AllSelect=O 2 times
with FpHazardFault (1)=1 2 times
with ValueGyro(l)=l 2 times
with ValueGyro (1) = 2 2 times
with RiuIdRiu (1)=1 2 times

Applied SeqGyroEscape (1) with ValueRiu (1)=1 2 times
Applied SeqGyroEscape (1) with ValueRiu (1) = 2 2 times
Applied SeqGyroEscape(1) with StkIdStkr(l)=l 2 times
,Applied SeqGyroEscape(1) with ValueStkr(l)=l 2 tines

SMC-IT 2003 9

Summaries of Spin & HiVy JPL

Spin is a widely distributed software package that supports the formal
verification of distributed systems
The software was developed at Bell Labs by Gerard Holzmann
Promela (Process Mefa Language) is the Spin input language
The Spin software is written in ANSI standard C, and is portable across all
versions of the UNlX operating system. It can also be compiled to run on
any standard PC running Linux, Windows95/98, or WindowsNT.

. c 0

HiVy is based on the new Hierarchical Sequential Automata (HSA) format
and provides automatically translated models for input to Spin
HiVy was developed by JPL and Erich Mikk (independent consultant)
beginning in FYO2
The HiVy toolset consists of the programs:

/

- Sfparse extracts pertinent data from the Stateflow@ model file
- sf2hsa translates parsed output into HSA (intermediate format)
- hsa2pr translates HSA into Promela
- and the HSA Merge Facility

SMC-IT 2003 I O

Promela Model Creation
I. Translate the Fault Protection Response state-chart

'"-%*- E=) /**
* function-Active()
* */

active proctype function-Active()
c

/*

*/

c
WAIT-ACTIVATION(activation-Active);
/* case 1 */
if :: current-state-Active ==
state-DisableAlarm ->label-DisableAlarm:

c

current-state-Active
=state-WaitForRedetection ;

endloopl:
atomic

if :: (T) ->

2. Create Promela environment model to close-the-loop around the FP response

+
SMC-IT 2003 11

Promela Model Creation = continued

3. Add Non-Determinism

Thus a system can be exercised in Spin with all possible ranges of values

An integrated system will provide visibility into the real system

SMC-IT 2003 12

Model Checking of Linear Temporal Logic
(LTL) Correctness Properties

JIpL

LTL Properties
- Formally specify requirements
- Automatically verifiable
- Suitable for Model Checking
- Verified over a Promela model

Ve rif i cation Res u Its
- Iterative model refinement
- Iterative property refinement
- Results applied to system

System Analysis
- New Properties of Interest
- Model Additions

~ Verification Result

System Analysis

SMC-IT 2003 13

Correctness Property Generation JPL

System Behavior
- Expressed in Promela
- Observed in Model Variables

Requirements Specification
- Expressed in English Text
- Formally Specified in LTL

Correctness Property (CP)
- LTL Specifications adapted to

available model variables
Yields model specific LTL
Requirement equivalence
preserved

- Model Checker verifies property

Requirements Specification

1 Prose Requirements

I LTL Specifications I

I Correctness Properties I
4

I System Behavior I I
I I 11 Model Variables 11
II Promela Model II
I‘ ‘I

Note: ‘prop - list’ and ‘propositions’ files auto-generated by HiVy provide
state and event model variable definitions for use in CPs

SMC-IT 2003 14

LTL Operators JPL

LTL operators express how system events and states relate temporally (in time).

11
<>

U

+

always

eventual I y

until

implies

11 P p remains invariantly true

<'P p will become true at least once

p U q p will remain true until q becomes true

p + q (!p 11 q) i fp is true then g is true

Also legal in LTL:
1 1 (logical OR), && (logical AND) and ! (negation)

SMC-IT 2003 15

Example Property JPL

Prose Requirement
- No repair response shall attempt recovery actions for an element

unless the corresponding urgency has been assessed as either
need it or want it

Formal LTL Specification
- O((RecoveryAction) - UrgencyNeedlt 11 UrgencyWantlt)

Correctness Property
- Cl(RunFPSeq==True + Urgency==Needlt 11 Urgency==Wantlt)

“Needlt” and “Wantlt” are integer constants

Verification Result
- Spin reports that the property holds over the Promela model
- Requirement verified with respect to System Model behavior

SMC-IT 2003 16

Conclusion/Future Work JPL

There is incentive to apply model checking techniques toward the
verification and validation.of mission-critical flight software such as DI FP
The HiVy Tool set helps automate the generation of Promela models
LTL Correctness Properties formalize the connection between design
requirements and verification articles
Approaching the initial design process with a model-based techniques will
make it easier to use model checking

We are continuing to verify DI FP response models against CPs
We are building up small “systems” of responses for verification with
Spin; responses are coordinated by a Fault Protection Engine, also
included in the integrated Promela model
We seek to quantify the benefits of model checking for DI FP at the
conclusion of our effort

We acknowledge the contributions of E. Benowitz, G. Holzmann, A. Oyake, J. Powell, & M. Smith to this work.

SMC-IT 2003 17

