APL

Model Checking Investigations for
Fault Protection System Validation

Kevin J. Barltrop
Paula J. Pingree

SMC-IT 2003 1

Background S0

. C.om_plexi'ty of software for flight s Software verification and validation (V&V)
MISSIONS IS Increasing _ methods and tools must also advance to
— Entry, Descent & Landing on Mars keep pace with software development

— Rendezvous with celestial bodies
— Spacecraft Formation Flying
— Rover Surface Operations

+ Traditional methods are being stretched

» Formal methods and model checking

¢ The criticality of flight software Sgi;s a powerful technique for software

operation is increasing for flight
missions

» We implement Fault Protection flight We asked...

software for robustness and ot e
autonomy in the event of detected 1. Can we apply “lightweight’ formal
y methods and model checking to

on-board failures or faults mission flight software verification
+ We are capturing software designs at JPL?
in state-charts and using automated o

) Can we automate the process?
code generation
3. Can we quantify the benefits

compared to traditional verification

approaches?

SMC-IT 2003 2

SMC-IT 2003

The Approach S0

Utilization of the Spin model checker with automatically translated state-
charts provided as input by the HiVy tool set

Validation examples selected and scoped to offer maximum demonstration
benefit to flight projects within the capabilities of our R&TD team, tools and

methods

Translation of system design and environment models from Stateflow to
Promela (the input language of Spin), integration of the closed-loop system
including C-code interfaces, specification of Linear Temporal Logic (LTL)
correctness properties to validate, and model checking results with Spin

Traditional State-charts Model Checking_
=> Formal (LTL)

Requirements | Informal Informal

» Formal (Promela)

Design Informal

Code

Deep Impact Mission Overview

Salient Features

¢ Deliver a 350 kg impactor at 10 km/s to open the interior of a comet nucleus.
Target is Comet P/Tempel 1.

4 Impactor produces crater dependent on comet porosity and strength.

spectral instruments.

spacecraft.
U 7 month mission duration. Launch: December 31, 2004 / Encounter:July 4, 2005

* Flyby spacecraft observes impact, crater development, ejecta and final crater with visible and IR multi-

* On-board autonomous optical navigation used for precise targeting and control of impactor and fly-by

AutoNav/ADCS
Impactor Release Control

E-24 hours E-2 hr

ADCS aligns {1S
Control frame with
Relative velocity

E-2 min

IT]-1 TM-2 IT™-3

Cassini %

Launch
Dec 31, 2004

7]

Impactl
July 4, 2005

Tempet1 Orbit
{5.5 year Period)

E-100 min

E-35 min E-S min

Tempel 1
.Nucleus

Fiyby S/C
Science and F
‘AutoNav Imaging to

Deflection Maneuver
Release + 12 min \ gy
Flyby SIC Sclence \ Shieid Mode
And Impactor Data / ! Attitude éhmmn
at 175 kbps Fiyby Sclence Inner Coma
Realtime D: y ADCS afigns control frame

at 175 kbps with relative velocity

Flyby S/C Science
Data Playback at 175 kbps
to 70-meter DSS

Earth -
Qrhit Science
—X N
L]
surface.
L
e Marsat impact.
Encounter -

/ LSOR-BatK
Imaging

To determine the differences between the interior of a cometary nucleus and its
Determine basic cometary properties by observing how the crater forms after

To identify materials in the pristine comet interior by measuring the composition of
the ejecta from the comet crater.

Determine the changes in natural outgassing of the comet produced by the impact.

To help discover whether comets lose their ice, or seal it in over time (evidence for
dormancy vs. extinction).

Address terrestrial hazard from cometary impacts

SMC-IT 2003

@ Fault Protection Architecture is Primarily JPL
Inherited from Previous Missions

* Deep Impact inherited much
of its fault protection software

architecture

— Pathfinder provided a centralized
fault management engine that
coordinates system level

. responses.

— Deep Space 1 provided direct
code generation from state chart
diagrams.

— Cassini provided the critical
sequencing approach.

S/C Commands

FP Commands

¢ The FP team discussed upgrading the engine to act as a model-based system
— Existing project investment in explicit behavior design was too large to make switching techniques
viable, but model-based algorithms have been implemented as ground tools.

s The project chose a compromise to exploit advantages of the two technologies
— Use model-based ground tools for design analysis, and for downstream auto-coding of software
and test scripts.
— Use auto-coding to eliminated the need for a programmers to implement specific behaviors.

__

Kgxrto Fiqures on Pages to Follow

I

t

]

1

] e i e .

: i 1

i = manually created product H !'= auto-generated product
] A\ ’

L G - L N R T T UL BEa 4 Y

1

--

SMC-IT 2003 5

Design Process Relied on
Auto-Generatlon of Products

@rg and After PDR

r

Component and System Level

\

. » . Activity
Failure Modes Analysis Mission Activity Design Fault Tree Analysis
_ J/ o e mmm———————— ’
/ N ——
,
Initial Spacecraft I~ ds ft
Fault Tree Analysis Mission and Spacecra
Dependency Model
_ J/ L
\
Recovery System Response x Simplified
=) Actions Table Template J Spacecraft
State Model
J \.
N 7

ﬁter PDR

A

Recovery
Sequence Templates

\‘c

\

System Response
State Charts

Recovery Command
Sequences
(after CDR)

- s i . g g~ ——

System Response
Flight Code
{after CDR)

- -

SMC-IT 2003

Spacecraft Dependency Model
Leads to State Chart Designs

Flight System Elements
TParent Element Mnemonic

¢ Child element mnemonic #1
Child element mnemonic #2
Child element mnemonic #3

Child element mnemonic #n

PrimeStateName HealthStateName

)

1

Table 2. Ilustration of Corrective Actions and Constraints lysis

Table 3. Tier Description Fable

/ Purpose The Device Repair Response shall xecover device functionality
after a fault has been detected.
Location 4 Prime Computer % Backup Compyter /
Tiers of 1. Reset 1553 RT
action 2. Ifnot at encounter cycle/reload device electrdnics
3. Swap to backup electronics
4. Exhaust
Interfering |No N/
Comments |none

A/

Table Size Sequence Calls

z m 3 Tz

g 3 3 8 =

Response Chart ID < s ® :IS g

-~ Require seif available xt

Recovery#1 4 Bus Bus ¢ Bus . . . 1

Recoveryi#2 2 Cbh L_Chh ___Chh S 1 2 ., .

Recovery#3 2 RfCmd _ RiCmd _ RfCmd 1 L2
2 RiRate 1
I&movery#n 3 BatCell BatCell BatCell 1

\
N

Manually created products based on
system and subsystem interviews

SMC-IT 2003

JPL

pending recovery then take this path

this action is allowed

I D ind

goded maximum attemnpts

are satisfied (such as backup is
PQ Max [Of thiS 3

healthy)

S

1 a future recovd
and no sequend

time has been estimated
is stili in progress)

FpSegAct

InputDevAvailable

InputDevPrime

MaxDev

MinDev
eqldAction
TMEOTLASIRTR

TimeOfRecoveryDev

ValueDev

Shared
Shared
Shared
Shared
Shared
Shared
Shared
Shared
Shared

boolean
uint8
uint8
uint8
uint16
uint16
double
double
uint8

Auto-generated products from the simplified spacecraft
model and from template. This state information
eventually feeds into the Promela environment model.

7

Testing Prior to Creating Source Code JPL
Relied on Auto-Generation of Products

Initial design testing derives directly from the design tables and model files.

To keep test time reasonable, the Matlab test scripts are restricted to traversing a “high value” subset
of the spacecraft state space.

We wish to focus on aspects that are unique to each behavior.

For states that are instances of the same kind of state, the test covers just a subset of those instances.
(e.g., a chart has 64 instance of thermal channels — we explore the first four and last two)

The explored state space is based on classification of state and input variables (selects, masks, events), with
state vector variations limited to at most one member of each class.

At this level we cannot check end-to-end flight system behavior, because the Matlab test harness lacks a
representation for the rest of the flight system.

s In alater venue we’ll use our models to auto-generate behavior predicts for activities on various test beds.

,—- ------------------ \\ .."0...

1 1 \
' System Response '

' State Charts '

'\ ____________________ 11

A
. . 1
Simplified System Response System Response |
Spacecraft Test Scripts) Behavior Report '
State Model !
—————————————————————————————— [- e e - ’

Matlab Test

K Script Template

System Response
‘ Behavior Sign-Off /
SMC-IT 2003

Automated Test Script Generation

JPL

Leads to Response Behavior Report

Data Name Scope Type Size
Id Local uint8
IsSubResp Local boolean
SysTime Local double
SysTimelnput Local double
Urgency Local uint8
EnabledAction1 Param boolean 3
EnabledAction2 Param boolean 3
IdDev Param uint8
MaxRetryAction1 Param uint8
MaxRetryAction2 Param uint8
TimeoutAction1 Param uint16
TimeoutAction2 Param uint16
Epoch Persist double
CalledAsSubResponse Shared boolean
FpSeqActive Shared boolean
InpytDevAvailable Shared boolean 4
InpdtDevPrime Shared uint8 4
Shared uint8
Shared uint8
Shared uint16 4
Shared uint16 4
Shared double 256
ecoveryDev Shared double 4

Shared uint8

Entries in data dictionary
are classified for script
generation according to
naming conventions.

Auto-generated by post-processing tool, but
sign-off on by test engineer. The requirements
checked here feed into the correctness
properties defined for Promela.

SMC-IT 2003

Data Description Tables
Parameter Initialization \
Select Item Loop
Select Item Value Loop
Mask Loop
‘Event Loop
Time Loop
l Response Call
end
Behavior Tabulation
end
end
end
end

Behavior Analysis Report /

N—

Auto-generated Matlab
script from data dictionary
and template.

Examples:

Select -> “Select star tracker A”
Mask 2 “Don’t power-cycle if is
back-up”

Event - “Delay action if recovery
is in progress”

VERIFICATION FOR RespAttControlRepair

Req (10) - Fix appropriate element

Applied RespAttEstRepair (1) to
Applied RespAttEstRepair (2) to
Applied RespAttEstRepair (3) to
Applied RespAttEstRepair (4) to

Applied RespGyroRepair(l) to no test case

Applied RespGyroRepair (2) to no test case

Applied RespGyroRepair (3) to no test case

Applied RespGyroRepair (4) to no test case
AllSelect=0 2 times
FpHazardFault (1)=1 2 times
ValueGyro(l1)=1 2 times
ValueGyro(1l)=2 2 times
RiuIdRiu(l)=1 2 times
ValueRiu(l)=1 2 times
ValueRiu(l)=2 2 times
StkIdStkr(l)=1 2 times

Applied SeqGyroEscape (1) with
Applied SegGyroEscape (1) with
Applied SeqGyroEscape (1) with
Applied SeqGyroEscape (1) with
Applied SeqGyroEscape (1) with
Applied SeqGyroEscape (1) with
Applied SeqGyroEscape (1) with
Applied SeqgGyroEscape(l) with
Applied SeqGyroEscape (1) with

no
no
no
no

test case
test case
test case
test case

ValueStkr(l)=1 2 times

@ Summaries of Spin & HiVy SJPL

« Spin is a widely distributed software package that supports the formal
verification of distributed systems

« The software was developed at Bell Labs by Gerard Holzmann
« Promela (Process Meta Language) is the Spin input language

» The Spin software is written in ANSI standard C, and is portable across all
versions of the UNIX operating system. It can also be compiled to run on
any standard PC running Linux, Windows95/98, or WindowsNT.

o P SAEST LY Uugla L TR TR vy NEET Y
Ll e e e O T T

* HiVy is based on the new Hierarchical Sequential Automata (HSA) format
and provides automatically translated models for input to Spin

» HiVy was developed by JPL and Erich Mikk (independent consultant)
beginning in FY02

« The HiVy toolset consists of the programs:
— SfParse extracts pertinent data from the Stateflow® model file
— sf2hsa translates parsed output into HSA (intermediate format)
— hsaZpr translates HSA into Promela
— and the HSA Merge Facility

SMC-IT 2003 10

Promela Model Creation

1. Translate the Fault Protection Response state-chart

(:s-mm
PRSI afen [x*
* function_Active()
/:"3; \ die *%/
-mﬂwnm e
o med SrsTina Epmery

active proctype function_Active()

/ *
current_state_Active
=state_WaitForRedetection;
*/
endloopl:
atomic

{

WAIT_ACTIVATION(activation_Active);

/* case 1 ¥/

if :: current_state_Active ==
state_DisableAlarm ->label_DisableAlarm:

e {
& gt el Y, if 12 (T) ->

2. Create Promela environment model to close-the-loop around the FP response

spacecraft model

SMC-IT 2003 11

@ Promela Model Creation - continued JPL

3. Add Non-Determinism

» Thus a system can be exercised in Spin with all possible ranges of values

 An integrated system will provide visibility into the real system

SMC-IT 2003 12

,@ Model Checking of Linear Temporal Logic _JISL
(LTL) Correctness Properties

 LTL Properties
— Formally specify requirements
— Automatically verifiable

— Suitable for Model Checking
— Verified over a Promela model
¢ Verification Results - Model Checker
— |terative model refinement
— lterative property refinement
— Results applied to system . .
| PP y Verification Result

« System Analysis ¢
— New Properties of Interest

SMC-IT 2003 13

@ Correctness Property Generation SP0

« System Behavior Requirements Specification
— Expressed in Promela i
— Observed in Model Variables Prose Requirements
Reaui s Specificati VYVVVVVVY
* Requirements Specification . .
— Expressed in English Text LTL Specifications
— Formally Specified in LTL
 Correctness Property (CP) Correctness Properties
— LTL Specifications adapted to A
available model variables System Behavior
* Yields model specific LTL :
- Requirement equivalence - _M?Ele_l__]a_‘r_lalb_lfs_ L
preserved 1
— Model Checker verifies property Promela Mode

Note: ‘prop_list’ and ‘propositions’ files auto-generated by HiVy provide
state and event model variable definitions for use in CPs

SMC-IT 2003 14

e

LTL Operators

AP0

LTL operators express how system events and states relate temporally (in time).

[l always [p p remains invariantly true

<> eventually <>p p will become true at least once

U until pUq p will remain true until g becomes true
—> implies p—>q (Ip]|lq)ifpistrue then q is true

Also legal in LTL:
|| (logical OR), && (logical AND) and ! (negation)

SMC-IT 2003

15

,@ Example Property JPL

* Prose Requirement
— No repair response shall attempt recovery actions for an element
unless the corresponding urgency has been assessed as either
need it or want it

« Formal LTL Specification
— Q((RecoveryAction) — UrgencyNeedilt || UrgencyWantit)

* Correctness Property
— Q(RunFPSeqg==True — Urgency==NeedlIt || Urgency==Wantit)
¢ “NeedlIt” and “Wantlt” are integer constants

* Verification Result
— Spin reports that the property holds over the Promela model
— Requirement verified with respect to System Model behavior

SMC-IT 2003 16

Conclusion/Future Work JPL

« There is incentive to apply model checking techniques toward the
verification and validation of mission-critical flight software such as DI FP

« The HiVy Tool set helps automate the generation of Promela models

« LTL Correctness Properties formalize the connection between design
requirements and verification articles

» Approaching the initial design process with a model-based techniques will
make it easier to use model checking

» We are continuing to verify DI FP response models against CPs

» We are building up small “systems” of responses for verification with
Spin; responses are coordinated by a Fault Protection Engine, also
included in the integrated Promela model

e We seek to quantify the benefits of model checking for DI FP at the
conclusion of our effort

We acknowledge the contributions of E. Benowitz, G. Holzmann, A. Oyake, J. Powell, & M. Smith to this work.

SMC-IT 2003 17

