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THE TRAJECTORY OF A PHOTON: 
GENERAL RELATIVITY LIGHT TIME DELAY 

James K. Millert 
and 

Slam G. Turyshevtt 

The transit time of a photon or electromagnetic wave between two 
points in space is a measurement that is used to determine the orbits of the 
planets and spacecraft for the purposes of navigation and science. Both the 
navigation of a spacecraft and science experiments, particularly associated with 
General Relativity, require precise measurements of the transit time. Since the 
Deep Space tracking stations can measure times to within 0.1 ns or about 3 cm, 
it is necessary to model the transit time to this accuracy. 

In this paper, a formula is developed for the total one-way transit 
time of a photon in the coordinate time of General Relativity. A bending term 
is identified that contributes about 10 ns to the transit time of a photon that 
grazes the Sun and is not generally included in other formula in the literature. 
The results are verified by performing numerical integration of the equations of 
motion for a photon. A numerical photon ephemeris is computed and compared 
with the analytic formula. 

INTRODUCTION 

The transit time of a photon or electromagnetic wave between two points in space is a mea- 
surement that is used to determine the orbits of the planets and spacecraft. The navigation of a 
spacecraft and science experiments, particularly those associated with General Relativity, require 
precise measurements of the transit time. Since the Deep Space Network (DSN) tracking stations 
can measure time with an accuracy of 0.1 ns or about 3 cm, it is necessary to model the transit time 
to  this accuracy. 

The transit time of a photon or electromagnetic wave is often referred to as the radar delay. This 
terminology originated with radar where a radio wave is transmitted and the delay in the reception of 
the reflected return is measured to determine the range. The time delay included that associated with 
transmission media and the path length. Individual delay terms from the troposphere, ionosphere 
and solar plasma are identified and used to calibrate the measured delay. For planetary spacecraft, 
the path length is computed from the theory of General Relativity. For a round trip travel time, 
the additional delay attributable to the curved space of General Relativity, over what would be 
computed assuming flat space, can amount to approximately 250 ps. In this memorandum, a 
formula is developed for the total one way transit time in the coordinate time of General Relativity. 
Interpretation of the transit time as a delay relative to flat space geometry is avoided because 
of the problem of resolving the ambiguity of flat space and curved space coordinates. Also, the 
determination of coordinate time avoids the problem of clocks that perform the measurement. Since 
coordinate time would be kept by a clock at rest with respect to the Sun and infinitely far away, the 
problem of reconciling measured time with coordinate time may be considered separately. 

Equations for the one-way transit time associated with a photon or electromagnetic wave in a 
vacuum are given in Ref. 1-4. All of these references have in common a logarithmic term that is 
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accurate to about 10 ns. In deriving this term, straight line motion is assumed and the contribution 
from the bending of the trajectory is ignored. In Refs. 2 and 3, additional terms are added to the 
logarithmic term that account for the error in the approximation to the metric. However, the error 
in omitting the bending term results in an error of about 10 ns or 3 meters which is two orders of 
magnitude greater than the error in the metric. In Ref. 4, the bending is accounted for and the 
same general approach is used for computing the time delay as in this paper. However, an attempt 
to verify Eq. 3.4 of Ref. 4 by numerical integration was unsuccessful. In this memorandum, an 
equation is developed for the one-way transit time that is accurate to better than 0.1 ns. 

ANALYTIC SOLUTION FOR LIGHT TIME DELAY 
The equations of motion are obtained by solution of the Einstein field equations. For a particle 

moving in the gravitational field of a spherical body, an exact solution may be obtained. The solution 
was obtained by Schwarzschild and the resulting metric tensor is defined by the line element, 

A characteristic of the Schwarzschild coordinate system is the dependence of the volume element 
on the coordinate F. The space surrounding a spherical body is not curved but dilated as a function 
of F and compressed in E. In order to make the relativistic system more aligned with classical 
coordinates, a clever coordinate transformation or change of variable was devised to make the local 
curved space coordinates more Euclidean. The transformed coordinate system is called isotropic 
Schwarzschild coordinates and the transformation is given by 

where r ,  4 and B are the isotropic coordinates. The isotropic form of the Schwarzschild metric is 
obtained by substituting the above transformations into the exact Schwarzschild equations. 

An analytic formula for the light time delay may be obtained by direct integration of the metric. 
The exact metric in isotropic Schwarzschild coordinates may be transformed from polar to Cartesian 
coordinates. 

For a photon, ds2 is zero and the equation to be integrated for the elapsed coordinate time ( t )  is 
obtained by solving for dt. 
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Expanding in a Taylor series and retaining terms of order c5, 

dt  = - 1 + 2- P + --) 7 P2 [dz2 + dy2 + dz2] 
C ( C2T 4 C 4 T 2  

The photon trajectory geometry is shown on Figure 1. The motion is constrained to the y - z 
plane and targeted from y1, z1 to y2, zz such that the photon arrives at the same y coordinate which 
is taken to be R. For this geometry, the x coordinate is zero and the y coordinate variation is much 
smaller than the z coordinate variation. Since 2 is less than the line element differentials 
may be expanded as a Taylor series, 

1 dy2 1 dy4 
(dx2 + dy2 + ~ 3 2 ’ ) ~  M dz+ -- - -- 

2 dz 8 d z 3  

Y 

Photon / Trajectory 

2 --., 

Figure 1 Photon Trajectory Geometry 

Changing the y variable of integration to z and inserting Eq.(9) into Eq.(8), 

C 

(9) 

Fully expanded, there are nine terms in Eq. (10) that are of order c5 or greater. Consider a photon 
grazing the surface of the Sun. A maximum error of about 10 cm or 0.3 nanoseconds is desired. To 
achieve this accuracy, numerical integration of the equation of geodesics reveals that only four of 
the terms in Eq. (10) need be retained and these are, 

In carrying out the integration, care should be taken in geometrically interpreting the results. A 
“straight line” in curved space geometry, the shortest measured distance between two points, is the 
photon trajectory and not the dashed line shown on Figure 1. Consider the first term of Equation 
11. 



This is called the flat space term. If the end points were in flat space, At, would be the time a 
photon travels from point 1 on Figure 1 to point 2. In curved space, there is no such thing as a 
straight line that connects these two points. The real interpretation of this term is the mathematical 
result of performing the integration on the first term. The second term is called the logarithmic 
term for reasons that will become obvious. 

Integration of Eq. (13) requires an equation for r as a function of z. An iterative solution may 
be obtained by assuming a solution for r and integrating to obtain-a first approximation for t and 
y as a function of z. This solution is inserted into the remainder term, the difference between the 
assumed and actual function, and a second iterated solution may be obtained for t and y. This 
method of successive approximations is continued until the required accuracy is achieved. As a 
starting function, "straight line" motion is assumed. Making use of the approximation that 

The first term of Eq. (15) integrates to the well known equation for the time delay. 

The second term of Eq.(15), which will be referred to as the radial remainder term, requires a more 
accurate equation for r to  be evaluated. 

In order to evaluate the terms of Eq. (11) associated with bending of the trajectory, an equation 
for y as a function of z is needed. The y component is associated with the bending of the photon 
trajectory. Consider two photons in the plane of motion separated by AR. The plane containing 
these two photons and perpendicular to the velocity vector is the plane of the wave front. The 
bending is simply the distance one photon leads the other divided by their separation. 

C A t d  6=-- 
AR 

In the limit as AR approaches zero, the equation for bending is 

The equation for the delay is taken to  be the logarithmic term 
computed starting at closest approach (22  = 0) to the origin. 

2p [ z + (22 R2)* 
C2 

t d  M --In 

(17) 

(18) 

and for simplicity the bending is 

Taking the derivative, 
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1 R 
( z ~ + R ~ ) * ( z + ( z ~ + R ~ ) $ )  

Making use of the trigonometric approximations, 

R 
(z2 + R2) 4 

cos45 = 
Z t an4  "N - 
R 

the equation for the bending reduces to 

6"N---Sin4 21.L 
c2R 

. The accumulated bending from z1 to z ,  expressed as differentials, is given by 

(23) 

where 65 is the initial angle between the photon velocity vector and the horizontal line shown on 
Figure 1. Referring to Figure 1, the y component of the photon is 

The angle 6f may be determined by evaluating the bending 
coordinates are rotated to target the photon to the point 2 2 .  

6,(z = 2',6f = 0) 6f = 
22 - 21 

The geometrical part of the radial remainder term of Eq. 
use of Eq. (28). 

over the interval from z1 to z2. The 

(29) 

(15) may be approximated by making 

(30) 
- R6, 

N 
1 - 1 1 1 

r -= , / ( R + C ~ , ) ~ + R ~  d w -  ( R 2 + $ ) %  , 

_ -  

The complete radial remainder term (At,,) is then given by 

2P At,, = lr p 2 p R  
c3(R2 + z2)q 

[6f(z - z1) + - c2R sin 41(z - z1) 

- 2cl c2R ( d n -  d G ) ] d z  
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The third term of Eq. (11) is the direct contribution of the trajectory bending to the time 
delay. This term is referred to as the bending term and is given by 

Substituting Eq. (24) for the slope into Eq. (ll), 

Carrying out the integration 

+ * c4 [arctan(:) - arctan(:)]} (35) 

The fourth and final term of Eq. (11) is the c5 approximation to the error in the metric. This 
is a small term and contributes less than a nanosecond to the delay. The equation is given by 

and may be approximated by 

7 P2 1 
At, dz 

Carrying out the integration 

Atm M 4 s  7 P2 [arctan ($) - arctan ($)I 

(37) 

The complete equation for the coordinate time delay of a photon moving from (y1,zl) to ( 9 2 , ~ ~ )  

is obtained by summing all the individual terms and 
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Before evaluating the individual terms of Eq. (39), the parameters used in the individual terms 
must be determined unambiguously from the end points to the photon trajectory. If two arbitrary 
end ponts in the y - z plane are defined by (gi, 2;)  and (yh, z;), the vectors from the origin to these 
points are given by 

I-1 = (0, Y:, 2:) 

I-2 = (0, Y;, 2;) 

the vector from point 1 to point 2 is 

r 1 2  = (0, Y; - Y:, 2; - Y:) 

The angle between 1-2 and 1-12 is computed from the dot product 

9 = arccos - 
(I-:;:;) 

The parameters needed in Eq. (39), with the coordinates rotated as shown on Figure 1, are 
then given by 

and the angle Sf is 

4 2  = arctan (z) 
4i = arctan ( z )  

1 
2 2  - 2 1  

Sf = - 

The fully expanded equation for the transit time is given by, 

1 1 
t2 - t i  M - ( Z Z  - 2 1 )  + 

C 

(43) 
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+ 1 2  [arctan (%) - arctan ($)I 
4 Rc5 (44) 

EQUATIONS OF MOTION 
The geodesic equation describes the acceleration of a particle in space time coordinates and is given 
bY 

d2xa a dx"dx" 
ds2 d s  d s  
- +ruv -- = O  (45) 

The equations of motion are obtained by substituting the Christoffel symbols (FEW) into the geodesic 
equation. The Christoffel symbols are computed from the metric by, 

Performing the indicated tensor algebra on the metric defined by Equation 3 yields the following 
equations for the acceleration of a point mass in exact Schwarzschild coordinates. 

d2$ 2 d f = d $  
dS2 F d s d 3  (48) - - - 

A clock carried on the particle will provide a measure of proper time (7) defined by 

Changing the variable of integration from S to T and substituting the metric equation into the 
geodesic equation gives the following equations of motion for a po'int mass. 

( g)2 = (1 - ?)-I + $ (1 - F)-2 ( g)2 + f (1 - ?)-,' ( g)2 (49) 
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The trajectory of a photon differs from that of a particle or spacecraft moving at the speed of 
light even in the limit of very small mass. The difference arises because a photon has zero rest mass 
and thus there is no force of gravity acting on the photon that gives rise to Newtonian acceleration. 
The photon follows the contour of curved space and the resulting path is the so called null geodesic. 
An observer's clock on the photon will not register any passage of time as the photon moves from 
point ( y l , q )  to point (y2,zz) resulting in ds being zero. The problem of ds approaching zero in 
the geodesic equation is resolved by introducing the affine parameter r that acts like a clock on the 
photon. Only this clock runs at a rate determined by the local gravity field strength and T is referred 
to as proper time. The proper time associated with a photon is simply the integral of these rates 
along the path of the photon. The difference in the proper time between two points times the speed 
of light is the distance that one would measure with a meter stick along the path of the photon. 
Since the measured time on the photon is zero, the metric degenerates to indeterminate forms that 
must be evaluated in the limit as ds approaches zero. The indeterminate form dslds,  which has the 
value of 1 for a spacecraft, has the value 0 for a photon in the limit as ds approaches zero. The 
equations of motion for a photon are thus given by, 

2 ( 5 -  $) (5) 2 

Isotropic Schwareschild Coordinates 
The exact isotropic Schwarzschild equations of motion may be obtained by substituting the 

coordinate transformation given by Equation 4 into the exact Schwarzschild equations of motion 
given by Equation 45 for a point mass and Equation 46 for a massless particle or photon. 

The variable q is used to separate the point mass equations of motion from the photon equations of 
motion. For a point mass, q is equal to one and for a photon, r ]  is equal to zero. Retaining terms to 
order c2, the exact isotropic Schwarzschild equations of motion for a point mass and a photon may 
be approximated by 
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d2$ 2 dr d$ 
c r r d r d r  

-@ M - (1 - +) 

The approximate isotropic Schwarzschild metric may be obtained by discarding terms higher 
than order c2 from Eq. (5). 

ds2 M (1 - 3 + 2) c2dt2 - (1 + a> (dr2 + r2dq!J2) 
c2r c4r2 (53) 

Solving the approximate metric for t ,  an equation similar to Eq. (10) is obtained. The only difference 
is the coefficient for the last term associated with the error in the metric. This term has a coefficient 
of -1 instead of $. When carried forward to Eq. (40) for the time delay, the last two terms also have a 
coefficient of -1 instead of f. The difference in the rendering of these terms provides an indication of 
the error associated with the approximate form of the isotropic metric since Equation 40 is accurate 
to better than order c2. The error in the time delay ( E t )  associated with the approximate isotropic 
Schwarzschild form of the metric is thus given by 

11 p2 
et = -- [arctan (2) - arctan (31 4 Rc5 (54) 

For a photon that traverses the solar system and grazes the surface of the Sun, the error 
attributable to the metric approximation is 

117rp2 

4Rc5 €graze = (55) 

or 0.089 ns (2.67 cm). Since the approximate form of the isotropic Schwarzschild metric is the basis 
for the N-body equations of motion, the error in the time delay should be consistent with the error 
in determining the mass of the bodies in the solar system and the position of the end points. The c4 
term is sometimes included in the t coefficient of the approximate isotropic metric yielding higher 
precision for the metric. However, the benefit of a high precision time measurement may be lost if 
the end points are determined from a lower approximation. 

COMPARISON OF ANUYTIC FORMULA WITH NUMERICAL INTEGRATION 

Equation 40 for the time delay associated with a photon or electromagnetic wave is given as a 
function of parameters that may be computed from the exact isotropic coordinates of the end points. 
This equation is exact in the sense that an equation in Schwarzschild curved space Coordinates could 
be obtained by back substitution of the coordinate transformations defining spherical coordinates 
and isotropic Schwarzschild coordinates that is accurate to the error of the terms omitted from the 
expansion. These error terms arise from two sources. The first and most obvious is the error in the 
metric. The metric error terms have been accounted for to order c4. The second source of error is in 
discarding remainder terms associated with the expansion. The major terms have been accounted 
for but the error in describing the trajectory bending to c4 and higher will ultimately limit the 
accuracy of Equation 40. Only the c2 bending is included and since this term contributes only a 
minor correction on the order of 10 ns, the c4 term would contribute several orders of magnitude 
less than the c2 term. 

In order to determine the veracity of Equation 40, a comparison with the time delay computed 
from integration of the geodesic equations of motion was made and the result plotted on Figure 2. In 
carrying out the numerical integration, a photon was initialized with a z coordinate of -149,000,000 
km and y coordinate of 696,000 km. The y component of velocity was set to zero and the z component 
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to c. The x coordinates of position and velocity were set to zero. Thus the photon is initialized with 
a velocity magnitude equal to the speed of light and parallel to the z axis about 1 a.u. from the sun 
and on a flight path that would graze the surface of the Sun if there were no bending due to General 
Relativity. The polar coordinates of the initial conditions were used to initialize the equations of 
motion (Equation 51) and these were integrated by a fourth order Runge Kutta integrator with 
fifth order error control. The integration was stopped at various times along the flight path and 
Equation 40 was evaluated. In evaluating Equation 40, the required parameters were computed from 
the integrated initial coordinates and the integrated coordinates at the time of the evaluation. This 
required a rotation of coordinates to place the coordinate axes into the alignment shown on Figure 
1 before the parameters of Equation 40 were computed. 

Also shown on Figure 2 are some of the individual groupings of terms from Equation 40. The 
linear term has been omitted since this term would require an additional 6 cycles of logarithmic 
scale. The dashed curve is the difference between the time delay computed by Equation 40 and the 
results of numerical integration. This difference is attributed to error in the numerical integration 
algorithm. This was verified by setting the mass of the Sun to zero and integrating straight line 
motion in the same coordinate system. Furthermore, it would be difficult to imagine real error terms 
with the periodicity shown on Figure 2. Unfortunately, the integration error masked the error in 
the metric. Therefore, Equation 40 could only be verified to about 0.1 ns which is about the same 
level of error as the error in the metric. The integration error of about t is consistent with 
the error obtained integrating spacecraft orbits for navigation. 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Figure 2 Time Delay for Solar Graze 

Observe that the radial remainder term and bending term cause errors on the order of 10 ns or 
37 cm. For relativity experiments carried out with laser beams between spacecraft, this error would 
be too large to be ignored. Even with conventional radio metric measurements, measurement errors 
of 10 cm are common. In any event, it does not make sense to include corrections for the error in 
the metric and the logarithmic term in the time delay and exclude the bending and radial remainder 
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term. 

PHOTON EPHEMERIS 

An ephemeris is by definition the tabulation of the positions of a celestial body as a function 
of time. If a photon is regarded as a celestial body, the position may be tabulated making use of 
Equation 40 for the time and Equation 27 for the y coordinate of position. The x position is zero 
and the z. coordinate is the independent parameter. This ephemeris may be tabulated along with 
the results from numerical integration of the equation of geodesics for a photon (Equation 45 or 
Equation 49). Since the independent parameter for the equation of geodesics is proper time, the 
following procedure was used to make the comparison. First, a trajectory was integrated from the 
initial conditions defined above for the generation of Figure 2. The initial conditions are the first 
record tabulated in Table 1. The velocity terms have been omitted since the speed of light is constant 
with respect to r, the measured or proper time. The equation of geodesics for a photon only turn 
the velocity vector and do not change the magnitude. A first approximation to the direction of the 
velocity vector is given by Equation 23. For the geometry selected here, the angle bf is taken to be 
zero. The second line of each record gives the value of the coordinates computed from the analytic 
formulae. The z coordinates used in the analytic formula were obtained by transformation of the 
end points obtained from the numerical integration result to bring the geometry into the alignment 
shown on Figure 1. 

The geodesic equations of motion that are integrated may be in the classical Schwarzschild co- 
ordinates of Equation 46 or the exact isotropic Schwarzschild coordinates of Equation 50. Either set 
of equations will yield the same exact result. If the classical Schwarzschild equations are integrated, 

Table 1 
Photon EDhemeris 

PROPER TIME z Y COORDINATE TIME (t) 

-0.14900000000000OOE+O9 
ANALYTIC FORMULA 

-0.1190207542000003E+O9 
ANALYTIC FORMULA 

-0.2908301679999592E+08 
ANALYTIC FORMULA 

-0.2101695579995966E+07 
ANALYTIC FORMULA 

-0.6027332899947603E+06 
ANALYTIC FORMULA 

0.8962289999880246E+06 
ANALYTIC FORMULA 

0.2395191289940149E+07 
ANALYTIC FORMULA 

0.3087547479891812E+08 
ANALYTIC FORMULA 

0.1507924579945738E+09 
ANALYTIC FORMULA 

the initial conditions must be transformed using Equation 4 and the results of the integration for 
transformed back to isotropic coordinates for comparison. Integration of the approximate isotropic 
equations of motion, that are the basis for the n-body equations of motion of De Sitter and Einstein, 
yields a result that differs from the exact equations by the error given by Equation 53. 

The results shown in Table 1 are tabulated for a photon that crosses the orbit of the Earth and 
grazes the Sun. The coordinate time is displayed to 16 digits which is about the machine precision 
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of the computer used for the computation, a PC with 53 bit mantissa and 11 bit exponent. The 
comparison is accurate to 14 decimal places and the error may be attributed to integrator round off. 
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