
Validating the Autonomous EO4 Science Agent
Benjamin Cichy, Steve Chien, Steve Schaffer, Daniel Tran, Gregg Rabideau, Rob Sherwood

Jet Propulsion Laboratory, California Institute of Technology

Firstname.Lastname@jpl.nasa.gov

Dan Mandl, Robert Bote, Stuart Frye, Bruce Trout, Seth Shulman, Jerry Hengemihle, Jeff D’Agostino
Goddard Space Flight Center

Firstname.Lastname@gsfc.nasa.gov

Jim Van Gaasbeck, Darrell Boyer
Interface and Control Systems

(jimv, dboyer}@interfacecontrol.com

ABSTRACT
This paper describes the validation rocess for
the Autonomous Science A ent, a so R ware agent
that is currently flying on % oard NASA’s EO-1
spacecraft. The agent autonomously collects,
analyzes, and reacts to onboard science data. The
Autonomous Science Agent has been designed
using a layered architectural ap roach with
specific redundant safeguards to re ts uce the risk
of an agent malfunction to the EO-1 spacecraft.
This “safe” design has been thoroughly validated
by informal validation methods supplemented by
sub-system and s stem-level testing. This paper

elements of the design that increase the safety of
the agent, and the process used to validate agent
safety.

descnbes the ana Y ysis used to define agent safety,

Keywords
Agent Safety, Autonomous Science, Automated Planning,
Robust Execution, Agent Architectures

1. INTRODUCTION
Autonomy technologies have incredible potential
to revolutionize space exploration. In the current
mode of operations, space missions involve
meticulous ground planning significantly in
advance of actual operations. In this paradigm,
rapid responses to dynamic science events can
require substantial operations effort. Artificial

Intelligence technalogies. 1 enable onboard
software to detept
upcoming mission
successful execution , of re-planned responses.
Additionally, with. pnboard response, the
spacecraft can acquirgdata, analyze it ovboard to
estimate its s nce value, and reaqt
autonomously to imizef science return. For
example, our Autonomous Science Agent can
monitor active volc;ano -sites, and schedule
multiple observations> w@n m eruption has been
detected. Or monitor er bgsins, and increase
imaging frequency dui:
However, building autonomy software for space
missions has a number of ke challenges; many
of these issues increase t ii e importance of
building a reliable, safe, agent.

1.

2.

Limited, intermittent communications to
the agent. A t ical s acecraft in low
earth orbit (SUC P 8 as E -1) has 8 10-
minute communications opportunities per
day. This means that the spacecraft must
be able to operate for long periods of time
without su ervision. For deep space
missions t e spacecraft ma be in
communications far less requently.
Some deep s ace missions only contact
the spacecra R once per week, or even
once every several weeks.
Spacecraft are very complex. A typical
spacecraft has thousands of components,
each of which must be carefully
engineered to survive rigors of space
(extreme tem erature, radiation, physical
stresses). A 2 d to this the fact that many
components are one-of-a-kind and thus
have behaviors that are hard to
characterize.

? i

mailto:Firstname.Lastname@jpl.nasa.gov
mailto:Firstname.Lastname@gsfc.nasa.gov
mailto:dboyer}@interfacecontrol.com

3. Limited observability. Because rocessing
telemetry is expensive, onboar a storage is
limited, and downlink bandwidth is
limited, engineering telemetry is limited.
Thus onboard software must be able to
make decisions on limited information
and ground operations teams must be able
to operate the spacecraft with even more
limited information.

4. Limited computing power. Because of
limited power onboard, s
computing resources are
constrained. An average
offer 25 MIPS and 128

2. AUTONOMY ARCHITECTURE
The autonomy software on EO-1 is organized as a
traditional three-layer architecture [8] (See Figure
1.). At the top layer, the Continuous Activity
Schedulin Planning Execution and Replanning
(C ASPER? system [3, 121 is responsible for
mission planning functions. Operating on the
tens-of-minutes timescale, CASPER responds to
events that have widespread (across orbits)
effects, scheduling science activities that respect
spacecraft operations and resource constraints.
Activities in a CASPER schedule become inputs
to the S acecraft Command, Language (SCL)
system [1 8 1. " * 1 %

less than a typica1 Personal computer.
Our cpu for ASE on EO-l 4
MIPS and 128MB RAM.

5 . High stakes. A ty ical space mission
costs hundreds of mi P lions of dollars, any

The total EO- Y Mission cost is $over B 100

CASPER models activities performed, b the
spacecraft and ground equipment md staf P , and
tracks activity effects on its model of spacecraft
state and resources. CASPER
PI
go
req

failure has si nificant economic im act.

million dollars. Over financial cost, many
launch and/or mission opportunities are
limited by planetary geometries. In these
cases, if a space mission is lost it may be
ears before another similar mission can

ge launched. Additionally, a space
mission can take years to plan, construct
the s acecraft, and reach their targets.

This paper discusses our efforts to build and
validate a safe autonomous space science agent.
The principal contributions of this paper are as
follows:

1. We describe our layered agent

framework for agent sa F etv.

This B elay can be catastrophic.

'*.. Control SOnalr
'e.. (very low level)

Sensor ..-'
Telemeby,:' architecture and how it rovides a

2. We describe our knowledge engineering
and model review process including
identification of safety risks and
mitigations.

3. We describe our testing process designed
to validate the safe design of our agent's
architecture and model.

We describe these areas in the context of the
Autonomous Sciencecraft Experiment (ASE), an
autonomy software package originally designed
for flight on the Air Force's Techsat-21 Mission
[2] in 2006 and now bein flown on NASA's
New Millennium Earth 0 % server One (EO-1)
spacecraft [4].

Figure 1. Autonomy Software Architecture

At the middle layer, SCL is responsible for
and executing detailed sequence of

comman generati? s that correspond to expansions of
CASPER activities. SCL also im lements
spacecraft constraints and fli ht rules. gperating

events that have local effects, but re uire
immediate attention and a quick resolution. %CL
performs activities using scripts and rules. The
scripts link to ether lower level commands and

constraints.
SCL sends commands to the EO-1 flight software
system (FSS) [9], the basic flight software that

on the several-second timesca 9 e, SCL responds to

routines and t 1 e rules enforce additional flight

operates the EO-1 s acecraft. The interface from
SCL to the EO-1 F SS is at the same level as
ground generated command sequences. This
interface is implemented by the Autonomy
Software Bridge (FSB), which takes certain
autonomy software messages and issues the
corresponding FSS commands. The FSB also
implements a set of FSS commands that it
responds to that perform functions such as startup
of the autonomy SW, shutdown of the autonomy

Switching from shadow to active mode, and
autonomy S W configuration actions.

The ESS accepts low level s acecraft commands.
These commands can be eit R er stored command
loads upload@ from the ground (e.g. ground
planned sequences) or real-time commands (such
as commands from the round during an uplink
pass). The autgnomy SfV commands appear to
<the FSS as realhme commands.

as a full fault an
nality which is dksig

1. Reject commands (from any source) that
endanger the spacecraft.
in situations that threaten spacecraft
execute pre-determined sequences
" the spacecraft and stabilize it for
assessment and reconfiguration.

For example, if a sequence issues commands that
point the spacecraft imagin instruments at the
sun, the fault protection so Bw are will abort the
pointing activity. Similarly, if a sequence issues
commands that would expend ower to unsafe
levels, the fault protection so Kw are will shut
down non-essential subsystems (such as science
instruments) and orient the spacecraft to
maximize solar ower generation. While the
intention of the f! ault protection is to cover all
potentially hazardous scenarios, it is understood
that the fault protection s o h a r e is not foolproof.
Thus, there is a strong desire to not command the
spacecraft into an hazardous situation even if it

the spacecraft.
The science analysis software is scheduled by
CASPER and executed by SCL. The results from
the science analysis software generate new
observation requests presented to the CASPER
system for integration in the mission plan.

is believed that t K e fault protection will protect

checking the SCL outputs as well.

3. MODEL BUILDING & VALIDATION
Because the control aspects of the Autonomy SW
are embodied in the CASPER & SCL models, our
methodology for developing and validating the
CASPER and SCL models is critical to our safe
agent construction process. These models
include constraints of the physical subsystems
including: their modes of operation, the
commands used to control them, the requirements
of each mode and command, and the effects of
commands. At levels of abstraction,
CASPER model k-aft activities such as

aetailed activitie

resources and

resource, or sub-system mode. The SCL model
also includes flight rules that monitor spacecraft
state, and execute appro riate scripts in res onse
to changes in state. s? CL uses its mo B el to
generate and execute sequences that are valid and
safe in the current context. While SCL has a
detailed model of current spacecraft state and
resources, it does not generally model future
planned spacecraft state and resources.
Development and verification of the EO- 1
CASPER and SCL models was a multiple step
process.

1. First a target set of activities was identified.

documents and reports. This allowed t a e
This was driven by a review of existin

modeler to get a high-level overview of the
EO- 1 spacecraft, including its physical
components and mission objectives.
Because EO- 1 is currently in operation,
mission reports were available from past
science requests. These reports were he1 ful
in identifling the activities performed w R en
collecting and downlinking science data.
For example, calibrations are performed

before and after each image, and science
requests typically include data collection
from both the Hyperion (hyperspectral) and
Advanced Land Imager (ALI) instruments.

2. Once the activities were defined, a formal
EO- 1 operations document was reviewed to
identify the constraints on the activities. For
example, due to thermal constraints, the

control, science operations, instrument
operations).

4. Model reviews were conducted where the
models were tabletop reviewed by a team of
personnel with a range of operations and
spacecraft background. This added
confidence that no incorrect parameters or
assumptions were represented in the model.

for example, are often specified
times relative to two events:

We were also rovided with the actual
downlinked te P emetry that resulted from the
execution of the science observation
request. This telemetry is not only visually
com ared to the telemetry generated by
AS$ but it can also be “played back” to the
ASE software to simulate the effects of
executing sequences. The command

of generating commands and telemet ,

telemetry, and fixing errors. These
comparisons against ground generated
sequences were reviewed by personnel from
several different areas of the operations
staff to ensure acceptability (e.g. overall
operations, guidance, navigation and

comparing with actual commands an 7

Table 1. Sample safety analysis for two risks.

High-level activity
decomposes into turn

on and turn off
activities that are ki th

the maximum
separation.

Rules monitor the
“on” time and issue a
turn off command if

left on too long.

Operations

CASPER

Maneuvers must be
planned at times

when the covers are
closed (otherwise,

instruments are
pointing at the earth)

Constraints prevent
maneuver scripts

‘from executing if
covers are open.

SCL

FSS

Instruments overheat
from being left on too

long

Instruments exposed
to sun

For each turn on
command, look for the

following turn off
command. Verify that

they are within the
maximum separation.

Verify orientation of
spacecraft during

periods when
instrument covers are

open.

Fault protection Fault protection will

An. interesting aspect of model development is
the, use of code generation techniques to derive
SCL constraint checks fiom CASPER model
constraints. In this approach, certain types of
CASPER modeling constraints can be translated
into SCL code to ensure activity validity at
execution time. If the CASPER model specifies
that activities use resources, this can be translated
into an SCL check for resource availability before
the activity is executed. If the CASPER model
specifies a state requirement for an activity, one
can auto-generate a check to see if that state is
satisfied before executint the activity.
Additionally, if the CASPE model specifies
sequential execution of a set of activities, code

enerated so that SCL enforces this
sequentia can be f execution.
For example, in calibrating the Hy erion
instrument, the solid state recorder (WARP7 must
be in record mode and the H perion instrument
cover must be “open”. Be Y ow we show the
CASPER model and the generated SCL
constraint checks.

/ / Hyperion calibration
activity hsi-img-cal

t
durat caldur;
/ / schedule only when the WARP is in record
/ / mode, recording data, and
/ / when the hyperion cover is open
reservations =

wrmwmode must-be “rec“,
ycovrstat must-be ”closed”;

/ / start and stop the instrument
decompositions =

yscistart, yscistop
, where yscistop starts-after

start of yscistart by caldur;

1

-- Hyperion calibratidd
script hsi-img-cal caldur

-- verify that the WARP is in record
-- mode, recording data, and
-- that the hyperion cover is open
verify wrmwmode = rec

and ycovrstat = closed
within 5 seconds

‘ .
-- start and stop the instrumend
execute yscistart
wait caldur sec
execute yscistop

end hsi-img-cal

Figure 2. Sample model and script for Hyperion calibration.

Note that this generated code also enforces the
sequential execution of the “yscistart” and
“yscistop” activities, separated by “caldur”
seconds. This shows how code is automatically
generated fiom a CASPER defined temporal
constraint over two activities.
As another example, when initiating the WARP
recording, there is a limit on the total number of
files on the WARP recorder (63 . In CASPER

created. In SCL, code is auto-generated to verify
that that man files can be created without
exceeding the P de number limit before the WARP
recording activity is allowed to be executed.

we define the constraint that “w R ” new files are

/ / Start the WARP recording
activity wrmsrec

I
I

...
reservations =

/ / reserve the required number of
/ / files on the WARP

wrmtotfl use wfl,
/ / change the warp to record mode when

/ / complete
wrmwmode change-to "rec" at-end,

. . .
1

xband groundstation

xband controller

ACS mode

-- Start the WARP recording

script wrmsrec
...

verify
wrmfreebl wrmtotfl + wfl <= 63
and wrmtoti-1 + wfl >= 1 and

...
end wrmsrec

unknown

enabled

nadir

Figure 3. Sample model and script for WARP recording.

4. TESTING ENFORCEMENT OF SAFETY
As demonstration software, the effort available
for testing our agent has been severely time and
resource constrained. Therefore we decided early
in the project that testing should focus
on ensurin that our agent executef%%$?
Missing a d ata collect would be an unfortunate
althou h tolerable failure - endangering the safety
of the E 0- 1 spacecraft would not.
Leveraging the completed safe7 analysis, we
approached validation by breaking our testing
strategy into three verification steps:

1. CASPER generates lans consistent both
with its internal mo B el of the spacecraft
and SCL's model and constraints.

2. SCL does not issue any commands that
violate the constraints of the spacecraft.

3. Both models accurately encode the
spacecraft operational and safety
constraints.

The first two steps build confidence that the ASE
software executes within the constraints levied by
the spacecraft model, while the third step verifies
that the model encodes sufficient information to
protect against potential safety violations.

We validate these requirements by extensive
testing of the autonomy s o h a r e on generated
test-cases, using simulation and rule-based
verification at each step. Note that the steps
enumerated above, and the test cases described
below, address only the to -two layers of the
onboard autonomy software [CASPER and SCL).
The existing EO-1 flight software testing and
validation is addressed by a separate, more
conventional, test plan. Additionally both
CASPER and SCL are mature and tested software
systems. The majority of the development effort
for ASE was in the two internal models that adapt
the systems to EO-1. Therefore the testing
strate y outlined below focuses the majority of

4.1 Test Case Parameters
Each EO-1 test case covers seven days of
s acecraft operations including multiple

Each observation
op ortunity, referred to as a CASPER
sc K edulable window, represents an opportunity to
schedule one or more science data collections or
downlinks. The test cases account for variations
in the mission and science objectives (mission
scenario paramete
s acecraft (spacecra

Mission scenario par
level planning goals passed tb CASPER. They
are derived from a combination of the orbit and
the science objectives uplinked from the ground.
Mission scenario parameters specify when targets
will be available for imaging, the parameters of
science observations (i.e. number of targets to
image and science analysis algorithms we wish to
execute), and reactions to observed science
events (i.e. follow-up observations).

Spacecraft state parameters encode the state of
EO-1 at the start of a schedulable window, and
changes to the spacecraft as a result of our agent's
actions. Changes to these parameters are
simulated using a software simulator that models
spacecraft state.

the e f f ort on exercising these models.

o I& servation opportunities.

c K anges to the spacecraft i: :

Table 2. Sample spacecraft state parameters.

I Parameter 1 Expected Initial State I

I unknown I target selected I
I warp electronics mode stndops I I

warp mode 1 science
algorithm

standby 1
fixed science goal

start not-specified any

number of
science goals 1 per orbit >2 1-2

warp allocated 0 32K blocks

warp bytes allocated 1 0 I
warp num files

fault protection

eclipse state

target view unknown I I
hyperion instrument power

hyperion imaging mode

hyperion cover state 1 closed I
I I

ali instrument power 1 on
I

ali active mechanism telapercvr I '
I

ali mechanism power disabled

ali fpe power

ale @e data gate
I

ali cover state closed

groundstation view unknown

mission lock

Table 3. Midsion-scenario parameters.
_ _ ~

Nominal Off-nominal

3-5

Parameter Extreme

schedulable
windows 0-3 5+

2-7
~~

start of orbit

expected
time of
science
analysis

anytime in
orbit, 1 per

orbit

~~

___-

orbits between
windows

window start-
time

0,8+ 1,s

+/- 10 min

+/- 10 min

1 per 3 orbits

window
duration

image start

image duration 8 s +/- 2 +/- 5 0,60

groundstation
AOS

anytime in
orbit, 1 per

orbit

AOS + 10
min +/- 1

60 min after
orbit start

30 min

~ _ _

~~

~~

1 per 3 orbits

groundstation
LOS +/- 3

eclipse start +I- 5

eclipse duration +/- 5

a minimum value, an “off-nominal-min” value at
the boundary between the off-nominal and the
extreme, a nominal value, an “off-nominal-max”,
and a maximum value.

based on the defined distributions. Furthermore,
by modifying the construction of the arameter
distribution, we were able to create of!-nominal
and extreme test sets that would stochastically
favor some parameters to choose values outside

4.2.3 Environmental Test Set
We further extended the stochastic test sets

og-nominal min off-nominal max described above to include execution variations
Figure 4. Parameter Decompositions based on the parameter qistributions. The

spacecraft simulator was modified to allow as
iations to expected prameter values.

argeter-value assignments. es changes to paranieta of the
current activity, and varies’ the value

the returned based on the provided parameter
distributions. Again nominal, off-nominal, and
extreme test sets were generated that instructed
the ‘simulator to vary arameter’ values within the

Finally we needed a way to how the system
res onded to unexpected or exogenous events

outside of the CASPER model. Unlike the
initial-state and execution-based testing described

min max of their nominal range.

ee sets of test cases:
test cases that exercise the five , execution of qctivifies the simulator

okb:AmL?

itial 1 >. CoResPonding value c r ass. ~

wit !I in the environment. ‘ These events could b’e

Variations allow for Simple tests Of Of!-nOminal do not commanded

, Using the parameter decomposition we designed fault conditions in the’ spacecraft or events
test cases off the baseline scenario that exercised
the .five values for each parameter while holding
all other Parameters constant. Sin le- arameter at any time, and

situations (variations that allow defects to be action event. To
easily traced back to the source). our spacecraft
The sin le-parameter ap roach enerates test sets simulator the ability to change the value of any

since we decomposed each of our relative to the execution of an activity, to a fixed
into five re resentative values, for N parameters, value or a value based on the distributions
we have 5 test cases or 4N+1 unique test cases described above. We added small-variation

stochastic test sets. test set of approximately 150 test cases.

4.2.2 Stochastic Test Set 4.3 Testing Procedure
Our Coverage test set exercises individual The test cases generated using the Procedure

Outlined above were used in unit testing the
Eetween multiple off-nominal parameters or even individual agent layers, as well as integrated
multiple varied wthin their nominal s stem testing. Unit testing verifies primarily the

&st two decompositions of our test lan - that ran es. In order to test more nominal scenarios,
a n t also gain coverage in the off-nominal CASPER command within its mode, and SCL
scenarios outside of the five representative did not constraints.

system, and that the
distributions. commanded sequences safely achieve the mission

o bj ec tives .
Parameters were given normal distributions
around their nominal value, with The Vast majority Of tests Were rUn On the solaris
deviations half the width of the off-nominal range and Linux platforms, as they are the fastest and
(such that 95% of expected values will be either most readily available. However, these test the
nominal or off-nominal). Nominal test sets were software under a different operating system, and
then generated assigning values to parameters therefore are Primarily usefid for testing

that sca B e linearly with t K f e num er of parameters. parameter, at either an absolute time or time

h J
as N of these will be t e same nominal test set). events (within appropriate off-nominal and
For the EO-1 science agent this yields a baseline nominal Classes) to O W nominal and Off-nOminal

arameters, but does not exercise the interactions

P
values, we devised a procedure for generating h t e rated testing verifies that these constraints
stochastic test sets based on parameter value hol c f within the

assumptions in the CASPER and SCL models. software simulator that monitored activities
The o erating system and timing differences are committed by CASPER and executed by SCL.
signi P icant enough that many code behaviors This simulator checks the timing, state, and
occur only in the target operating system, resource constraints of the activities against those
compiler, and timing of interest. Therefore every that are encoded in the CASPER model. The
effort was made to extensively validate the agent flight testbeds used a higher-fidelity “Virtual
on higher fidelity testbeds. Satellite (VSat)” simulator, developed

Test Description

Onboard cloud detection

Onboard commanding path

CASPER ground generated commands
executed onboard

Software jumping and loading

ASE autonomously acquires dark
calibration image and performs
downlink

ASE autonomously acquires science
images and performs downlinks

ASE autonomously analyzes science
data onboard and triggers subsequent
observations

inde endently from the autonomy software, -for

simulator modeled the spacecra
subsystem level, includin s stems, states, and,
resources not modeled by 8sy A PER or SCL.
Recalling that our primary testing ob‘ective was

we developed a separate “safety monitor” that
watched only for violations of the safety and
,operations constraints. The safet monitor was
developed with no
SCL, models, and the actual spacecraft
commands issued e autonomy software
(isolated black-box testing), These commands
were fed into state machines that monitored each

veri P ication of command sequences. The VSat

to verify that our agent commanded E! 0-1 safely,

dge o f t h e CASPER or

Table 4. Testbeds available to validate EO-1 agent.

Low - can test model but

Test Date

March 2003

May 2003

July 2003

August 2003

October 2003

January 2004 -
present

April 2004
(expected)

2.5 GHz I

Moderate -runs flight

JPL Flight Testbed

RAD 3000

,,:-L

I ‘ .
I I

Testbed

Mongoose M5,

12MHz I I I
On the Linux, Solaris, and GESPAC testbeds we
used an automated test harness to setup, execute,
and evaluate the results of each test run. The test
harness ran over ten thousand simulations during
our validation process.
The number of integrated test cases we ran before
each upload was limited by available testin

upload opportunity. To ensure stability, we
implemented minimum requirements on the
number of test cases that must execute without an
identified failure before a build was cleared for
fli ht. These requirements varied by platform as

Linux/Solaris, 1 month on the GE PAC single
board computers, and 1 week on the flight
testbeds.

4.4 Success Criteria
To be considered successful a test run must not
violate any spacecraft, o erations, or safety
constraints. On the Linux, 8 olaris, and GESPAC
testbeds these constraints were checked by a

resources and the time remaining before eac a

fo f lows: 3 years of simulated o erations on

of the safety and operations constraints. Any
violations that were discovered were considered
high-priority defects.

5. STATUS & DEPL
The ASE software has
to full operations with the
below.

ily progressing
milestones listed

~

The on1 step remaining for full operations is the

planning and execution. This software is
currently in integration and test and is expected to
be read for flight in the April 2004 timeframe.
When t&s software build is ready it will be flown
until September 2004 and will be used to acquire

flight o f the integrated science with autonomous

as many science-triggered scenes as resources
allow.

[5] S. Chien et al, EO 1 Autonomous
Sciencecraft Ex eriment Safety Analysis
Document, ZOO!.

6. CONCLUSIONS
This paper has described the design and
validation of a safe agent for autonomous space
science operations. First, we described the
challenges in developin a robust, safe, spacecraft
control agent. r Secont we described how we
used a layered architecture to enhance redundant
checks for agerif safety. Third, we described our
model development, validation, and review.
Finally, we described our test plan, with an
emphasis on verifying agent safety.

D. Cohen; Dalal, S.; Fredman, M.; and
Patton, G.1997. The AETG system: An
approach to testing based on combinatorial
design. IEEE Transactions on Software
Engineering 23(7):43 7-444.
A.G. Davies, R. Greeley, K. Williams, V.
Baker, J. Dohm, M. Bwl, E. M'olsness, R.
Castano, T. Stough, J. Roden, 8 ..Chien, R.
Shenvood, "ASC Science Report
2001. (downloadable from ase.jpl.nasa.gov)

[8] E. Gat, Three layer architectures, in Mobile
7. ACKNOWLEDGEMENT
Portions of this work were erformed at the Jet

Aeronautics and Space Administration.

Robots and Artificiial:Intelig~nce; I % .
nasso, and Murphy eds.),

Pro ulsion Laboratory, CaEfornia Institute of pp. 195-210.
h-1 Mission Tec Rn ology, under a contract with the National

8. REFERENCES
[I] P. Bonasso, J. Firby, E. Gat, D. Kortenkamp,

D. Miller, M. Slack, Experiences with an
Architecture for Intelligent, Reactive A ents,
Journal of Ex erimental and Theoretica f

[2] S. Chien, R. Shenvood, M. Burl, R. Knight,
._ Aaificial Inte P ligence, 9:237-256, 1997.

G. Rabideau, B. Engelhardt, A. Davies, P.
Zetocha, R. Wainri ht, P. Klupar, P.
Cappelaere, D. Sur a a, B. Williams, R.
Greeley, V. Baker, J. Doan, "The TechSat 21
Autonomous Sciencecraft Constellation",
Proc 1-SAIRAS 2001, Montreal, Canada, June
2001.

Shenvood, and G. Rabideau, "Using Iterative
Repair to Im rove Responsiveness of

Fifth International Conjrence on Artificial
Intelligence Planning and Scheduling,
Breckenridge, CO, April 2000. (see also
casper.jpl.nasa.gov)

[4] S. Chien, R. Shenvood, D. Tran, R. Castano,
B. Cichy,
A. Davies, G. Rabideau, N. Tang, M. Burl, D.
Mandl, S.Frye, J. Hen emihle, J. D'Agostino,

Van Gaasbeck, D. Boyer, M. Griffin, R.
Greeley, T. Doggett, K. Williams, V. Baker,
J. Dohm, "Autonomous Science on the Earth
Observer One Mission," ,'I International
Sym osium on ArtiJicial Intelligence Robotics

2003.

[3] S. Chien, R. Knight, A. Stechert, R.

Planning an B Schedulin ,I1 Proceedings of the

R. Bote, B. Trout, S. B hulman, S. Ungar, J.

an cp Automation in Space, Nara, Japan, May

[IO] Interface and Control Systems, 'SCL Home
Page, sclrules.com ' I I

(. * %

[IIINASP '---
httu :Nic .arc .nasa. E
Remote Agent Exp

iecw remote-agenv,
Qt Yome Page, I

. >

[121 G. Rabideau,
Fukunaga, A
Planning for
ASPEN System," International Symposium
on ArtiJcial Intelligence Robotics and
Automation in Space, Noordwij k, The
Netherlands, June 1999.

http://sclrules.com

