Validating the Autonomous EO-1 Science Agent
Benjamin Cichy, Steve Chien, Steve Schaffer, Daniel Tran, Gregg Rabideau, Rob Sherwood

Jet Propulsion Laboratory, California Institute of Technology

Firstname.Lastname@jpl.nasa.gov

Dan Mandi, Robert Bote, Stuart Frye, Bruce Trout, Seth Shulman, Jerry Hengemihle, Jeff D’Agostino
Goddard Space Flight Center
Firstname.Lastname@gsfc.nasa.gov

Jim Van Gaasbeck, Darrell Boyer

- .. Interface and Control Systems

{jimv, dboyer}@interfacecontrol.com

ABSTRACT ' :
This paper describes the validation process for
the Autonomous Science Agent, a software agent
that is currently flying onboard NASA’s EO-1
spacecraft. The agent autonomously collects,
analyzes, and reacts to onboard science data. The
Autonomous Science Agent has been designed

using a layered architectural approach with

specific redundant safeguards to reduce the risk
of an agent malfunction to the EO-1 spacecraft.
This “safe” design has been thoroughly validated
by informal validation methods supplemented by
sub-system and system-level testing. This paper
describes the analysis used to define agent safety,
elements of the design that increase the safety of
the agent, and the process used to validate agent
safety.

Keywords
Agent Safety, Autonomous Science, Automated Planning,
Robust Execution, Agent Architectures

1. INTRODUCTION

Autonomy technologies have incredible potential
to revolutionize space exploration. In the current
mode of operations, space missions involve
meticulous ground planning significantly in
advance of actual operations. In this paradigm,
rapid responses to dynamic science events can
require substantial operations effort. Artificial

Intelligence technologies, : enable onboard
software to detect .science events, replan -
upcoming mission . operations, .and enable .
successful execution of re-planned responses.
Additionally, with . .onboard - response, the

spacecraft can acquire”data, analyze it onboard to - . .

estimate its science = value, . and .react’
autonomously to maximize: science return. .. For

example, our Autonomous .Science Agent. can

monitor active volcano sites - “and schedule

multiple observations when an eruption has been.

detected. Or monitor river ‘basins, and increase

imaging frequency during periods of flooding.

However, building autonomy- software for space
missions has a number of key challenges; many
of these issues increase the importance of
building a reliable, safe, agent.

1. Limited, intermittent communications to
the agent. A typical spacecraft in low
earth orbit (such as EO-1) has 8 10-
minute communications opportunities per
day. This means that the spacecraft must
be able to operate for long periods of time
without supervision. For deep space
missions the spacecraft may be in
communications far less gequentl .
Some deep space missions only contact
the spacecraft once per week, or even
once every several weeks.

2. Spacecraft are very complex. A typical
spacecraft has thousands of components,
each of which must be carefully
engineered to survive rigors of space
(extreme temperature, radiation, physical
stresses). Add to this the fact that many
components are one-of-a-kind and thus
have behaviors that are hard to
characterize.

mailto:Firstname.Lastname@jpl.nasa.gov
mailto:Firstname.Lastname@gsfc.nasa.gov
mailto:dboyer}@interfacecontrol.com

3. Limited observability. Because processing
telemetry is expensive, onboard storage is
limited, and downlink bandwidth is
limited, engineering telemetry is limited.
Thus onboard software must be able to
make decisions on limited information
and ground operations teams must be able
to operate the spacecraft with even more
limited information.

4. Limited computing power. Because of
limited power onboard, spacecraft
computing resources are usually very
constrained. An average spacecraft CPUs
offer 25 MIPS and 128 MB RAM - far
‘less than a typical personal computer.
Our CPU allocation for ASE on EO-1 is 4
MIPS and 128MB RAM.

5. High stakes. A ty{)ic_al space mission
costs hundreds of millions of dollars, any
failure has significant economic.impact.

- The total EO-1 Mission cost is-over $100

- million dollars. Over financial cost, many
- launch' and/or mission -opportunities are
limited by planetary geometries. In these
cases, if a space mission is lost it may be

ears before anothér similar mission can
Additionally, a space

- be launched.
mission can take years to plan, construct

- the spacecraft, and reach their targets.
This delay can be catastrophic. - :

This paper. discusses our efforts to build and
validate a safe autonomous space science agent.
The principal contributions of this paper are as
follows:

1. We describe our layered agent
architecture and how it provides a
framework for agent safety.

2. We describe our knowledge engineering
and model review process Including
identification of safety risks and
mitigations.

3. We describe our testing process designed
to validate the safe design of our agent’s
architecture and model.

We describe these areas in the context of the
Autonomous Sciencecraft Experiment (ASE), an
autonomy software package originally designed
for flight on the Air Force’s Techsat-21 Mission
[2] in 2006 and now being flown on NASA’s
New Millennium Earth Observer One (EO-1)
spacecraft [4].

2. AUTONOMY ARCHITECTURE

The autonomy software on EO-1 is organized as a
traditional three-layer architecture [8] (See Figure
1.). At the top layer, the Continuous Activity
Scheduling Planning Execution and Replanning
(CASPER) system [3, 12] is responsible for
mission planning functions. Operating on the
tens-of-minutes timescale, CASPER responds to
events that have widespread (across orbits)
effects, scheduling science activities that respect
spacecraft operations and resource .constraints.
Activities in a CASPER schedule become inputs
to the Spacecraft. Command. Language (SCL)
system [10]. , R A T ;
CASPER models activities performed by the -
spacecraft and ground: equipment and- staff, and
tracks activity effects on its model:of spacecraft
state and resources. CASPER then searches.for
plans that combine these basic activities 1o satisfy.
goals (such as downlinks . and .. observation .

requests) while enforcing operations constraints, .. - |

Sensor - . Control Signals
(very low level)

Figure 1. Autonomy Software Architecture

At the middle layer, SCL is responsible for
generating and executing detailed sequence of
commands that correspond to expansions of
CASPER activities. ~ SCL also implements
spacecraft constraints and flight rules. Operating
on the several-second timescale, SCL responds to
events that have local effects, but require
immediate attention and a quick resolution. SCL
performs activities using scripts and rules. The
scripts link together lower level commands and
routines and the rules enforce additional flight
constraints.

SCL sends commands to the EO-1 flight software
system (FSS) [9], the basic flight software that

operates the EO-1 spacecraft. The interface from
SCL to the EO-1 FSS is at the same level as
ground generated command sequences. This
interface is implemented by the Autonomy
Software Bridge (FSB), which takes certain
autonomy software messages and. issues the
corresponding FSS commands. The FSB also
implements a set of FSS commands that it

responds to that perform functions such as startup

of the autonomy SW, shutdown of the autonomy

. SW, switching from shadow to active mode, and

other autonomy SW configuration actions.

" The FSSaccepts low level spacecraft commands.

These commands can be either stored command
- loads: uploaded :from the
. . -planned sequences) or real-time commands (such

~as’commands. from the ground during an uplink

pass). The autonomy SW commands appear to
the FSS as real-time commands. As part of its

core, the, FSS has a full’ fault ‘and spacecraft '

protection functionality which is designed to:

1. Reject commands (from any source) that "

would endanger the spacecratft. .

2. ‘When in situations that threaten spacecraft

health, execute pre-determined sequences
" to “safe” the spacecraft and stabilize it for
+ - ground assessment and reconﬁ'guratlon. _

- For example, if a sequence issues commands that
point -the spacecraft imagin;
sun, the fault protection software will abort the
pointing activity. Similarly, if a sequence issues
commands that would expend power to unsafe
levels, the fault protection software will shut
down non-essential subsystems (such as science
instruments) and orient the spacecraft to
maximize solar power generation. While the
intention of the If?ault protection is to cover all
potentially hazardous scenarios, it is understood
that the fault protection software is not foolproof.
Thus, there is a strong desire to not command the
spacecraft into any hazardous situation even if it
is believed that the fault protection will protect
the spacecraft.

The science analysis software is scheduled by
CASPER and executed by SCL. The results from
the science analysis software generate new
observation requests presented to the CASPER
system for integration in the mission plan.

This layered architecture for the autonomy SW is
designed such that each lower layer is validating
the output of the hi%her layers. The planner
activities are checked by SCL prior to being sent
on to the FSS. The FSS fault protection is
checking the SCL outputs as well.

round : (e.g. ground.-

instruments at the

3. MODEL BUILDING & VALIDATION

Because the control aspects of the Autonomy SW
are embodied in the CASPER & SCL models, our
methodology for developing and validating the
CASPER and SCL models 1s critical to our safe
agent construction process. These models
include constraints of the physical subsystems
including: their modes of operation, the
commands used to control them, the requirements
of each mode and: command, and the effects of

-commands. At higher levels of abstraction,
- . -CASPER models: spaceécraft activities such as
science data collects. and, downlinks, which may,_ -,
- .correspond to a;large nymber of commands.
These activities can:be_decomposed into, more. ., .. .,

_detailed activities until a suitable

level is reached

\\\\\ .

repair schedules, tracking both the current state &
resources and

the expected evolution *of - :

_for_planning. CASPER alsé models spacecraft ~ .-
‘state and its progression over time. This includes.
- disctete states such, as .instrument modes. as well- y
as' resources such as memory available for data. = . -
storage. CASPER uses its. model to generate and . -

spacecraft state and resources based on planned

_activities.

commands to the EQ-1 FSS. Sdpacec'raft' state is
modeled as a database, of recor

state, and execute appropriate scripts in response
to changes in state. SCL uses its mocfél to
generate and execute sequences that are valid and
safe in the current context. While SCL has a
detailed model of current spacecraft state and
resources, it does not generally model future
planned spacecraft state and resources.

Development and verification of the EO-1
CASPER and SCL models was a multiple step
process.

1. First a target set of activities was identified.
This was driven by a review of existin
documents and reports. This allowed the
modeler to get a high-level overview of the
EO-1 spacecraft, including its physical
components and mission objectives.
Because EO-1 is currently in operation,
mission reports were available from past
science requests. These reports were helpful
in identifying the activities performed when
collecting and downlinking science data.
For example, calibrations are performed

-SCL continues to model spacecraft activities-at: =+
finer levels of detail. These activities are modeled ' . *
as SCL scripts, which’ when ' executed, may . '
‘execute additional scripts, ultimately resulting in.

s in SCL, where, "
each record stores the current value of a sensor,, == =~
resource, or sub-system mode. The SCL model

also includes flight rules that monitor spacecraft

before and after each image, and science
requests typically include data collection
from both the Hyperion (hyperspectral) and
Advanced Land Imager (ALI) instruments.

Once the activities were defined, a formal
EO-1 operations document was reviewed to
identify the constraints on the activities. For
example, due to thermal constraints, the
Hyperion cannot be left on longer than 19+

“minutes, and the ALI no longer than 60

* " *-constraints between activities: Downlink ** - -
-+ activities, for example, are often specified

provided spreadsheets that specified timing

with start times relative to two events: -

- dcquisition of signal (AOS) and.loss of - - -
.signal (LOS). Fault protection documents
- listing fault monitors (TSMs) were also
consulted, using the reasoning that - . .
o _%fftablevo'perations'should. not trigger

.. With the model defined, CASPER was able,

to generate-preliminary command
were representative of flight requests. These
sequences were compared with the actual -

- sequences that were uplinked for the same
request. Significant differences between the

two sequences-identified potential problems
with the model. For example, if two '
commands were sequenced in a different
order, this may reveal an overlooked
constraint on one or both of the commands.
We were also provided with the actual
downlinked te{)emetry that resulted from the
execution of the science observation
request. This telemetry is not only visually
compared to the telemetry generated by

ASE, but it can also be “played back” to the
ASE software to simulate the effects of
executing sequences. The command
sequences were aligned with the telemetry
to 1dentify the changes in spacecraft state
and the exact timing of these changes.
Again, any differences between the actual
telemetry and the ASE telemetry revealed
potential errors in the model. A consistent
model was defined after several iterations
of generating commands and telemetry,
comparing with actual commands an
telemetry, and fixing errors. These
comparisons against ground generated
sequences were reviewed by personnel from
several different areas of the operations
staff to ensure acceptability (e.g. overall
operations, guidance, navigation and

minutes. The EO-1 operations team also = +performed. In this process, experts

.+ -procedure,
- implemented in

sequences from past science requests that - -

control, science operations, instrument
operations).

4. Model reviews were conducted where the
models were tabletop reviewed by a team of
personnel with a range of operations and
spacecraft background. This added
confidence that no incorrect parameters or
assumptions were represented in the model.

Finally, a spacecraft safety review process was
om each of

. the spacecraft subsystem areas (e.g. guidance,

navigation and - control, solid state recorder,
Hyperion instrument, power, ...)

each o

,,,,

FSS. This analysis formed the basis for the

_ testing of agent safety discussed.in.section 4. A
- sample analysis for two risks.is.shown below.. -

we) studied the
-description of the ASE software and ¢ommands =~ |

~ that .the ASE SW would exécute and derived &' =

list of Fotential hazards to spacecraft health. For '~

these hazards, a set of possible safeguards.. =~
.- was._conjectured: implemented by operations . ",
implemented’ : in . CASPER, *°
CL, and; implemented in the

Table 1. Sample safety analysis for two risks.

Instruments overheat
. : Instruments exposed
from being left on too
to sun
long
For each turn on Verify orientation of
command, look for the .
. spacecraft during
. following turn off .
Operations . periods when
command. Verify that | .
- s instrument covers are
they are within the open
| maximum separation. ' pett.
High-level activity Maneuvers must be
. -.decemposes into turn -planned at times
: on-and turn off whien the covers are
C_A‘SPER activities that ar¢ with | closed. (otherwise,
the'maximum instruments are
separation. - : pointing at the earth) |
- " Rules monitor the | - Constraints prevent
i “on” time and issue a’ maneuver scripts
SCL . : . g L
; turn off command if from executing if
left on too long. covers are open.
Fault protection - Fault protection will
software will shut safe the spacecraft if
ESS) .
S down the instrument if | covers are open and
left on too long. pointing near the sun.

An.interesting aspect of model development is
the .use of code generation techniques to derive
SCL constraint checks from CASPER model
constraints. In this approach, certain types of
CASPER modeling constraints can be translated
into SCL code to ensure activity validity at
execution time. If the CASPER model specifies
that activities use resources, this can be translated
into an SCL check for resource availability before
the activity is executed. If the CASPER model
specifies a state requirement for an activity, one
can auto-generate a check to see if that state is
satisfled before executin the activity.
Additionally, if the CASPER model specifies
sequential execution of a set of activities, code
can be generated so that SCL enforces this
sequential execution.

For example, in calibrating the Hyperion
instrument, the solid state recorder (WARP?must
be in record mode and the Hyperion instrument
cover must be “open”. Below we show the
CASPER model and the generated SCL
constraint checks.

// Hyperion calibration
activity hsi_img cal
{
durat caldur;
// schedule only when the WARP is in record
// mode, recording data, and
// when the hyperion cover is open
reservations =
wrmwmode must_be "rec",
ycovrstat must be "closed"; .
// start and stop ‘the instrument
" decompositions = S
{I,yscistart, yscistop
‘:.where yséistop‘starts_after iU
start of yscistart by'éaldurp
-}

f— Hyperion calibratidn
script hsi_img cal caldur
-- verify that the WARP is in rééord
- mode, recording\daté, and
-- that the hyperidﬁkcover is opén
verify wrmwmode = rec
and ycovrstat. = closed
within 5 seconds

-- start and sﬁbpf;h;ﬂinétrument/
execute yséistart o

wait caldur sec '4

execute yscistop. ;/4 0

end hsi_img cal

Figure 2. Sample model and script for Hyperion calibration.

Note that this generated code also enforces the
sequential execution of the “yscistart” and
“yscistop” activities, separated by “caldur”
seconds. This shows how code is automatically
generated from a CASPER defined temporal
constraint over two activities.

As another example, when initiating the WARP
recording, there is a limit on the total number of
files on the WARP recorder (63). In CASPER
we define the constraint that “wfl” new files are
created. In SCL, code is auto-generated to verify
that that many files can be created without
exceeding the file number limit before the WARP
recording activity is allowed to be executed.

// Start the WARP recording
activity wrmsrec

{

reservations =
// reserve the required number of
// files on the WARP
wrmtotfl use wfl,
// change the warp to record-mode when
// complete

wrmwmode change_to "rec" at_end,
}

"~ -- Start the WARP recording
script wrmsrec R \

verify
wrmfreebl wrmtotfl + wfl <= 63

and wrmtotfl + wfl >= 1 and

end wrmsrec

Figure 3. Sample model and script for WARP recording.

4. TESTING ENFORCEMENT OF SAFETY
As demonstration software, the effort available
for testing our agent has been severely time and
resource constrained. Therefore we decided early
in the project that testing should focus primarily
on ensuring that our agent executed safely.
Missing a data collect would be an unfortunate
although tolerable failure - endangering the safety
of the %O-l spacecraft would not.

Leveraging the completed safety analysis, we
approached validation by breaking our testing
strategy into three verification steps:

1. CASPER generates plans consistent both
with its internal model of the spacecraft
and SCL’s model and constraints.

2. SCL does not issue any commands that
violate the constraints of the spacecraft.

3. Both models accurately encode the
spacecraft operational and safety
constrants.

The first two steps build confidence that the ASE
software executes within the constraints levied by
the spacecraft model, while the third step verifies
that the model encodes sufficient information to
protect against potential safety violations.

We validate these requirements by extensive
testing of the autonomy software on generated
test-cases, using simulation and rule-based
verification at each step. Note that the steps
enumerated above, and the test cases described
below, address only the top-two layers of the
onboard autonomy software (CASPER and SCL).
The existing EO-1 flight software testing and
validation 1s addressed by a separate, more
conventional, test plan. = Additionally both
CASPER and SCL are mature and tested software
systems. The majority of the development effort
for ASE was in the two internal models that adapt
the systems to EO-1. Therefore the testing
strategy outlined below focuses the majority of

the effort on exercising these models.

4.1 Test Case Parameters

Each EO-1 test -case covers seven days of
spacecraft operations = including = multiple
observation opportunities. Each observation
opg)ortunity, referred to as a CASPER
schedulable window, represents an opportunity to
schedule one or more science data collections or
downlinks. The test cases.account for variations
in the mission and science objectives (mission -

scenario parametersgt,,, - initial: state . of the: . -

Sﬁacecraﬂ (spacecratt state parameters), and
changes to the spacecraft state during execution.

Mission scenario parameters represent the high-
level planning goals passed to' CASPER: They:
are derived from a combination of the orbit and
the science objectives uplinked from the ground.
Mission scenario parameters specify when targets
will be available for imaging, the parameters of
science observations (i.e. number of targets to
image and science analysis algorithms we wish to
execute), and reactions to observed science
events (i.e. follow-up observations).

Spacecraft state parameters encode the state of
EO-1 at the start of a schedulable window, and
changes to the spacecraft as a result of our agent’s
actions. Changes to these parameters are
simulated using a software simulator that models
spacecraft state.

Table 2. Sample spacecraft state parameters.

Parameter Expected Initial State
xband groundstation unknown
xband controller enabled
ACS mode nadir
target selected unknown
warp electronics mode stndops

exhaustive execution of a known

warp mode standby
warp bytes allocated 0
warp num files 0
fault protection enabled
eclipse state full sun
target view unknown
hyperion instrument power on
hyperion imaging mode idle
hyperion cover state - closed
ali instrument power on .
ali active mechanism telapercvr
ali mechanism power . . .| i . . disabled
ali fpe power -disabled
ale fpe data gate ~disabled
ali cover state closed
groundstation view unkﬁo_wn
mission lock

unlocked’

Table 3. Miséjon-scenario parameters.

[Parameter

Nominal Off-m‘)minal. Extreme
sch.edulable 0-3 35 54
windows i
0rb1t§ between 2.7 1.8 0.8+
windows
wmdgw start start of orbit +/- 10 min any
time
expected
wmdf)w tlrpe of +/- 10 min any
duration science
analysis
anytime in
image start orbit, 1 per 1 per 3 orbits any
orbit
image duration 8s+/-2 +/-5 0,60
. anytime in
groundstation orbit, 1 per 1 per 3 orbits any
AOS .
orbit
groundstation AOS+10 .
LOS min +/- 1 *-3 any
. 60 min after
eclipse start orbit start +/-5 any
eclipse duration 30 min +/-5 any

science an an
algorithm Y Y any
science goal .
start fixed not-specified any
number of 1 per orbit 12 >2
science goals
warp allocated 0 32K blocks any

To exhaustively test every possible combination
of state and observation parameters, even just
assuming a nominal and failure case for each

_parameter and 3i6gnoring‘* ‘éxecution variations,
-would require 2

or over 68 billion test cases
(each requiring on average a few hours to run).
The challenge therefore becomes selecting a set
of tests that most effectively.cover the space of

- possible parameter variations within a timeframe

that allows for reasonable software delivery.

4.2 Design of Test Cases . S
Traditional flight software can be tested'througl%
set” o
seclluences. Autonomy software however must be
able to execute in, and react to, a much wider
range of possible scenarios. As show above,
testing all the possible scenarios would easily be

intractable.

To trim the set of possible: inputs, we can take .
advantage of the scenarios 1dentified by the
model review process. For example, we never
expect to take more than five science data collects
before a downlink (and usually exactly five as
that is the limit of the WARP data storage). A
downlink is almost always followed immediately
by a format of the WARP. Science collections
are always preceded by a slew and wheel bias and
followed by a slew to nadir. Together these form
a baseline mission scenario covering all the
actions to be commanded by our agent.

Instead of testing every possible combination of
spacecraft and mission parameters, we instead

ecided to vary parameters off of this baseline
scenario, thus reducing the number of parameter
variations our test cases must consider. This is a
similar approach to that used to validate the
Remote Agent Planner for DS1. [11].

We started the design process by using the
nominal parameter values identified in the model
review process. Using these assignments we
generated test cases that vary each of the
parameters across three distinct classes of values
— nominal (single value), off-nominal (range of
acceptable values), and extreme (failure
conditions). For each parameter, we defined a set
of five values at the boundaries of these classes —

a minimum value, an “off-nominal-min” value at
the boundary between the off-nominal and the
extreme, a nominal value, an “off-nominal-max”,
and a maximum value.

Min~—s. nominal ___ max

off-nominal min off-nominal max
S . Figure 4. Parameter Decompositions

i :‘cht ‘we generatedlghree sets of test cases:

. 1., Coverage: test cases that exercise the five .
. 'boundary parameter-value assignments. . -

~-'2. Stochastic test cases, grounded in the
"~ baseline - mission scenario,

. - mis; . that yarfr‘
parameters ‘within nominal, off-nominal,

- "and extreme ranges.

3. Environmental test cases that vary initial ' .

 state, and insert execution uncertainty.

421 }P.c-rli'f-dnﬁveter-Cove‘rage Test Set - :

- Using the parameter decomposition we designed

. test cases off the baseline scenario that exercised

the five ‘values for each parameter while holding
all other parameters constant. Single-parameter

variations allow for simple tests of off-nominal |

situations . (variations that allowdefects to be
easily traced back to the source). '

The single-parameter approach generates test sets
that scale linearly with the number of parameters.
Since we decomposed each of our parameters
into five representative values, for N parameters,
we have 51\})test cases (or 4N+1 unique test cases
as N of these will be the same nominal test set).
For the EO-1 science agent this yields a baseline
test set of approximately 150 test cases.

4.2.2 Stochastic Test Set
Our Coverage test set exercises individual
garameters, but does not exercise the interactions
etween multiple off-nominal parameters or even
multiple parameters varied within their nominal
ranges. In order to test more nominal scenarios,
and also gain coverage in the off-nominal
scenarios outside of the five representative
values, we devised a procedure for generating
stochastic test sets based on parameter value
distributions.

Parameters were given normal distributions
around their nominal value, with standard
deviations half the width of the off-nominal range
(such that 95% of expected values will be either
nominal or off-nominal). Nominal test sets were
then generated assigning values to parameters

. corresponding value class. .

based on the defined distributions. Furthermore,
by modifying the construction of the parameter
distribution, we were able to create off-nominal
and extreme test sets that would stochastically
favor some parameters to choose values outside
of their nomtnal range.

4.2.3 Environmental Test Set

We further extended the stochastic test sets
described above to include execution variations
based on the parameter distributions. The
spacecraft simulator was modified to allow as

.input variations, to exXpected: parameter values.
 During the execution of activities the simulator
simulates changes to each parameter, of the
current activity, and then varies the value

returned - based on ' the' ‘provided ' parameter
distributions. Again nominal, off-nominal, and

“extreme test sets were generated' that. instructed

the 'simulator to vary parameter values within the

PR

Finally we needed a way to vtvest hdw the systérﬁ'

" responded to unexpected or exogenous events
within the environment: = These events could be -~
+ fault- conditions in: the' spacecraft or ‘events -
‘outside of the CASPER: ‘model.

-initial-state and execution-based testing described

- above, these events cotuld'happen at any time, and -
_.do not necessarily cotrespond to any commanded
“action or modeled spacecraft event. - To*
“accomplish this we ‘added to our spacecraft

Unlike - the " -

simulator the ability to change the value of any
parameter, at either an absolute time or time
relative to the execution of an activity, to a fixed
value or a value based on the distributions
described above. We added small-variation
events (within appropriate off-nominal and
nominal classes) to our nominal and off-nominal
stochastic test sets.

4.3 Testing Procedure

The test cases generated using the procedure
outlined above were used in unit testing the
individual agent layers, as well as integrated
system testing. Unit testing verifies primarily the
irst two decompositions of our test plan — that
CASPER command within its model, and SCL
did not violate any spacecraft constraints.
Integrated testing verifies that these constraints
hold within the full system, and that the
commanded sequences safely achieve the mission
objectives.

The vast majority of tests were run on the Solaris
and Linux platforms, as they are the fastest and
most readily available. However, these test the
software under a different operating system, and
therefore are primarily useful for testing

assumptions in the CASPER and SCL models.
The operating system and timing differences are
significant enough that many code behaviors
occur only in the target operating system,
compiler, and timing of interest. Therefore every
effort was made to extensively validate the agent
on higher fidelity testbeds.

Table 4. Testbeds avqila_ble to validate EO-1 agent.

On the Linux, Solaris, and GESPAC testbeds we
used an automated test harness to setup, execute,
and evaluate the results of each test run. The test
harness ran over ten thousand simulations during
our validation process.

The number of integrated test cases we ran before
each upload was limited by available testin
resources and the time remaining before eac
upload opportunity. To ensure stability, we
implemented minimum requirements on the
number of test cases that must execute without an
identified failure before a build was cleared for
flight. These requirements varied by platform as
follows: 3 years of simulated operations on
Linux/Solaris, 1 month on the GESPAC single
board computers, and 1 week on the flight
testbeds.

4.4 Success Criteria

To be considered successful a test run must not
violate any spacecraft, operations, or safety
constraints. On the Linux, Solaris, and GESPAC
testbeds these constraints were checked by a

Type - | Number. Fidelity - -
Solaris s | Low~can test. model but
Sparc Ultra L - mottiming . oy
- Linux N o |
LN (.“"”’7 E - u~y» ,
‘ 2.5 GHz D A S
GESPAC | .. T o
¥ PoWaPC i B Moderate — runs flight - ,
100-450 MHz | :
JPL Flight Testbed ' .
o 1 : Moderate
RAD 3000 S AR
EO-1 Flight Testbed | R
‘ Mongoose M5, .+] H_lgh_—runs,Fllght -
a : S Software |
12MHz '
EO-1 Autonomy v
Testbed) ’ High — runs Fii_ght
Mongoose M3, Software
12 MHz

software simulator that monitored activities
committed by CASPER and executed by SCL.
This simulator checks the timing, state, and
resource constraints of the activities against those
that are encoded in the CASPER model. The
flight testbeds used a higher-fidelity “Virtual
Satellite (VSat)” simulator, developed
independently from the autonomy software, for
verification of command sequences. The VSat
simulator modeled the spacecraft. at. the
subsystem level, including systems, states, and
resources not modeled by AgPER or SCL. '

" Recalling that our primary testing objective was
~“to verify that our agent commanded EO-1 safely,
" we developed a separate “safety’ monitor” that

watched only for violations. of the safety and

. ..operations constraints. . The safety monitor was
.., developed with no knowledge of the CASPER or =
", SCL . models, and parsed the actual spacecraft

‘commands issued by the autonomy software

(isolated black-box testing).: These commands
were fed into state machines that monitored each

- of the safety and operations constraints. Any
“violations that were discovered were considered

high-priority defects. "~ -

5. STATUS & DEPLOYMENT

The ‘ASE software has been steadily progressing

to full operations with the major milestones listed

‘below.
Test Description Test Date
Onboard cloud detection March 2003
Onboard commanding path May 2003

CASPER ground generated commands | July 2003
executed onboard

Software jumping and loading August 2003

ASE autonomously
calibration image
downlink

acquires dark | October 2003
and performs

ASE autonomously acquires science | January 2004 -
images and performs downlinks present

ASE autonomously analyzes science | April 2004
data onboard and triggers subsequent | (expected)
observations

The only step remaining for full operations is the
flight of the integrated science with autonomous
planning and execution. This software is
currently in integration and test and is expected to
be ready for flight in the April 2004 timeframe.
When this software build is ready it will be flown
until September 2004 and will be used to acquire

. Tec

as many science—triggered scenes as resources
allow.

6. CONCLUSIONS

This paper has described the design and
validation of a safe agent for autonomous space
science operations. First, we described the
challenges in developing a robust, safe, spacecraft
control- agent. - Second, we described how we
used a layered architecture to enhance redundant
checks for-agent safety. Third, we described our
model development, validation, ‘and review.

, Finally, .we. described . our test plan, with an
. emphasis. on verifying agent safety. '

7. ACKNOWLEDGEMENT

(5]

[6]

(7]

(8]

Portions of this. work were performed at the Jet -

‘ \Pr'OE\Illlsion: Laboratory; California Institute of "
NS hnology, under a contract with the National -
- ‘Aecronautics and Space Administration. - S

" '8. REFERENCES
*[11 P. Bonasso, J. Firby, E. Gat, D. Kortenkamp,
- D.Miller, M. Slack, Experiences with an

Architecture for Intelligent, Reactive Agents, -

Journal of Experimental and Theoretica
. Artificial Intelligence, 9:237-256, 1997.

“[2] S. Chien, R. Sherwood, M. Burl, R. Knight,
G.-Rabideau, B. Engelhardt, A. Davies, P.
Zetocha, R. Wainright, P. Klupar, P.
Cappelaere, D. Surka, B. Williams, R.
Greeley, V. Baker, J. Doan, "The TechSat 21
Autonomous Sciencecraft Constellation”,
g(r)oci i-SAIRAS 2001, Montreal, Canada, June

01.

[3] S. Chien, R. Knight, A. Stechert, R.
Sherwood, and G. Rabideau, "Using Iterative
Repair to Improve Responsiveness of
Planning and Scheduling," Proceedings of the
Fifth International Conjgerence on Artificial
Intelligence Planning and Scheduling,
Breckenridge, CO, April 2000. (see also
casper.jpl.nasa.gov)

[4] S. Chien, R. Sherwood, D. Tran, R. Castano,
B. Cichy,
A. Davies, G. Rabideau, N. Tang, M. Burl, D.
Mandl, S.Frye, J. Hensgemihle, J. D’ Agostino,
R. Bote, B. Trout, S. Shulman, S. Ungar, J.
Van Gaasbeck, D. Boyer, M. Griffin, R.
Greeley, T. Doggett, K. Williams, V. Baker,
J. Dohm, “Autonomous Science on the Earth
Observer One Mission,” ," International
Syzrlzposium on Artificial Intelligence Robotics
%0 3Automation in Space, Nara, Japan, May

9]

- [10]Interface and Contr

S. Chien et al, EO 1 Autonomous
Sciencecraft Exyeriment Safety Analysis
Document, 2003.

D. Cohen; Dalal, S.; Fredman, M.; and
Patton, G.1997. The AETG system: An
approach to testing based on combinatorial
design. IEEE Transactions on Software
Engineering 23(7):437-444.

A.G. Davies, R. Greeley, K. Williams, V. .
Baker, J. Dohm, M. Buzl; E. Mjolsness, R. ..

Castano, T. Stough, J. Roden, S. Chien, R. .

Sherwood, "ASC Science Report;!" August

2001. (downloadableifrom.ase-.jpl.nas_a.gov),-. .

E. Gat, Three layer architectures, in Mobile
Robots and Artificial:Intelligence;:-: =~ !
(Kortenkamp, Bonasso, and M
‘Menlo Park, CA: AAAI Press, pp. 195-210. 4
Goddard Space Flight Center, EO-1 Mission
page: eol.gsfc.nasa.gov. = -7
trol Sisﬁ\tie;fnS, SCL Home

Page, sclrules.com
' by

L [INASA Ames, e o
http://ic.arc.nasa.gov/projects/remote-agent/, * .
.. Remote Agent Experiment Home Page. . - - - .
~ [12)G. Rabideau, R. Knight, S. Chien, A. S
ukunaga, A. Govindjee, "Iterative Repair. -

Planning for Spacecraft Operations in the -
ASPEN System," International Symposium
on Artificial Intelligence Robotics and
Automation in Space, Noordwijk, The
Netherlands, June 1999.

urphy eds;), o

http://sclrules.com

