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ABSTRACT 
This paper describes the validation rocess for 
the Autonomous Science A ent, a so R ware agent 
that is currently flying on % oard NASA’s EO-1 
spacecraft. The agent autonomously collects, 
analyzes, and reacts to onboard science data. The 
Autonomous Science Agent has been designed 
using a layered architectural ap roach with 
specific redundant safeguards to re ts uce the risk 
of an agent malfunction to the EO-1 spacecraft. 
This “safe” design has been thoroughly validated 
by informal validation methods supplemented by 
sub-system and s stem-level testing. This paper 

elements of the design that increase the safety of 
the agent, and the process used to validate agent 
safety. 

descnbes the ana Y ysis used to define agent safety, 
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1. INTRODUCTION 
Autonomy technologies have incredible potential 
to revolutionize space exploration. In the current 
mode of operations, space missions involve 
meticulous ground planning significantly in 
advance of actual operations. In this paradigm, 
rapid responses to dynamic science events can 
require substantial operations effort. Artificial 

Intelligence technalogies. 1 enable onboard 
software to detept 
upcoming mission 
successful execution , of re-planned responses. 
Additionally, with. pnboard response, the 
spacecraft can acquirgdata, analyze it ovboard to 
estimate its s nce value, and reaqt 
autonomously to imizef science return. For 
example, our Autonomous Science Agent can 
monitor active volc;ano -sites, and schedule 
multiple observations> w@n m eruption has been 
detected. Or monitor er bgsins, and increase 
imaging frequency dui: 
However, building autonomy software for space 
missions has a number of ke challenges; many 
of these issues increase t ii e importance of 
building a reliable, safe, agent. 

1. 

2. 

Limited, intermittent communications to 
the agent. A t ical s acecraft in low 
earth orbit (SUC P 8  as E -1) has 8 10- 
minute communications opportunities per 
day. This means that the spacecraft must 
be able to operate for long periods of time 
without su ervision. For deep space 
missions t e spacecraft ma be in 
communications far less requently. 
Some deep s ace missions only contact 
the spacecra R once per week, or even 
once every several weeks. 
Spacecraft are very complex. A typical 
spacecraft has thousands of components, 
each of which must be carefully 
engineered to survive rigors of space 
(extreme tem erature, radiation, physical 
stresses). A 2 d to this the fact that many 
components are one-of-a-kind and thus 
have behaviors that are hard to 
characterize. 
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3. Limited observability. Because rocessing 
telemetry is expensive, onboar a storage is 
limited, and downlink bandwidth is 
limited, engineering telemetry is limited. 
Thus onboard software must be able to 
make decisions on limited information 
and ground operations teams must be able 
to operate the spacecraft with even more 
limited information. 

4. Limited computing power. Because of 
limited power onboard, s 
computing resources are 
constrained. An average 
offer 25 MIPS and 128 

2. AUTONOMY ARCHITECTURE 
The autonomy software on EO-1 is organized as a 
traditional three-layer architecture [8] (See Figure 
1.). At the top layer, the Continuous Activity 
Schedulin Planning Execution and Replanning 
(C ASPER? system [3, 121 is responsible for 
mission planning functions. Operating on the 
tens-of-minutes timescale, CASPER responds to 
events that have widespread (across orbits) 
effects, scheduling science activities that respect 
spacecraft operations and resource constraints. 
Activities in a CASPER schedule become inputs 
to the S acecraft Command, Language (SCL) 
system [ 1 8 1. " *  1 %  

less than a typica1 Personal computer. 
Our cpu for ASE on EO-l 4 
MIPS and 128MB RAM. 

5 .  High stakes. A ty ical space mission 
costs hundreds of mi P lions of dollars, any 

The total EO- Y Mission cost is $over B 100 

CASPER models activities performed, b the 
spacecraft and ground equipment md staf P , and 
tracks activity effects on its model of spacecraft 
state and resources. CASPER 
PI 
go 
req 

failure has si nificant economic im act. 

million dollars. Over financial cost, many 
launch and/or mission opportunities are 
limited by planetary geometries. In these 
cases, if a space mission is lost it may be 
ears before another similar mission can 

ge launched. Additionally, a space 
mission can take years to plan, construct 
the s acecraft, and reach their targets. 

This paper discusses our efforts to build and 
validate a safe autonomous space science agent. 
The principal contributions of this paper are as 
follows: 

1. We describe our layered agent 

framework for agent sa F etv. 

This B elay can be catastrophic. 

'*.. Control SOnalr 
'e.. (very low level) 

Sensor ..-' 
Telemeby,:' architecture and how it rovides a 

2. We describe our knowledge engineering 
and model review process including 
identification of safety risks and 
mitigations. 

3. We describe our testing process designed 
to validate the safe design of our agent's 
architecture and model. 

We describe these areas in the context of the 
Autonomous Sciencecraft Experiment (ASE), an 
autonomy software package originally designed 
for flight on the Air Force's Techsat-21 Mission 
[2] in 2006 and now bein flown on NASA's 
New Millennium Earth 0 % server One (EO-1) 
spacecraft [4]. 

Figure 1. Autonomy Software Architecture 

At the middle layer, SCL is responsible for 
and executing detailed sequence of 

comman generati? s that correspond to expansions of 
CASPER activities. SCL also im lements 
spacecraft constraints and fli ht rules. gperating 

events that have local effects, but re uire 
immediate attention and a quick resolution. %CL 
performs activities using scripts and rules. The 
scripts link to ether lower level commands and 

constraints. 
SCL sends commands to the EO-1 flight software 
system (FSS) [9], the basic flight software that 

on the several-second timesca 9 e, SCL responds to 

routines and t 1 e rules enforce additional flight 



operates the EO-1 s acecraft. The interface from 
SCL to the EO-1 F SS is at the same level as 
ground generated command sequences. This 
interface is implemented by the Autonomy 
Software Bridge (FSB), which takes certain 
autonomy software messages and issues the 
corresponding FSS commands. The FSB also 
implements a set of FSS commands that it 
responds to that perform functions such as startup 
of the autonomy SW, shutdown of the autonomy 

Switching from shadow to active mode, and 
autonomy S W configuration actions. 

The ESS accepts low level s acecraft commands. 
These commands can be eit R er stored command 
loads upload@ from the ground (e.g. ground 
planned sequences) or real-time commands (such 
as commands from the round during an uplink 
pass). The autgnomy SfV commands appear to 
<the FSS as realhme commands. 

as a full fault an 
nality which is dksig 

1. Reject commands (from any source) that 
endanger the spacecraft. 
in situations that threaten spacecraft 
execute pre-determined sequences 
" the spacecraft and stabilize it for 
assessment and reconfiguration. 

For example, if a sequence issues commands that 
point the spacecraft imagin instruments at the 
sun, the fault protection so Bw are will abort the 
pointing activity. Similarly, if a sequence issues 
commands that would expend ower to unsafe 
levels, the fault protection so Kw are will shut 
down non-essential subsystems (such as science 
instruments) and orient the spacecraft to 
maximize solar ower generation. While the 
intention of the f! ault protection is to cover all 
potentially hazardous scenarios, it is understood 
that the fault protection s o h a r e  is not foolproof. 
Thus, there is a strong desire to not command the 
spacecraft into an hazardous situation even if it 

the spacecraft. 
The science analysis software is scheduled by 
CASPER and executed by SCL. The results from 
the science analysis software generate new 
observation requests presented to the CASPER 
system for integration in the mission plan. 

is believed that t K e fault protection will protect 

checking the SCL outputs as well. 

3. MODEL BUILDING & VALIDATION 
Because the control aspects of the Autonomy SW 
are embodied in the CASPER & SCL models, our 
methodology for developing and validating the 
CASPER and SCL models is critical to our safe 
agent construction process. These models 
include constraints of the physical subsystems 
including: their modes of operation, the 
commands used to control them, the requirements 
of each mode and command, and the effects of 
commands. At levels of abstraction, 
CASPER model k-aft activities such as 

aetailed activitie 

resources and 

resource, or sub-system mode. The SCL model 
also includes flight rules that monitor spacecraft 
state, and execute appro riate scripts in res onse 
to changes in state. s? CL uses its mo B el to 
generate and execute sequences that are valid and 
safe in the current context. While SCL has a 
detailed model of current spacecraft state and 
resources, it does not generally model future 
planned spacecraft state and resources. 
Development and verification of the EO- 1 
CASPER and SCL models was a multiple step 
process. 

1. First a target set of activities was identified. 

documents and reports. This allowed t a e 
This was driven by a review of existin 

modeler to get a high-level overview of the 
EO- 1 spacecraft, including its physical 
components and mission objectives. 
Because EO- 1 is currently in operation, 
mission reports were available from past 
science requests. These reports were he1 ful 
in identifling the activities performed w R en 
collecting and downlinking science data. 
For example, calibrations are performed 



before and after each image, and science 
requests typically include data collection 
from both the Hyperion (hyperspectral) and 
Advanced Land Imager (ALI) instruments. 

2.  Once the activities were defined, a formal 
EO- 1 operations document was reviewed to 
identify the constraints on the activities. For 
example, due to thermal constraints, the 

control, science operations, instrument 
operations). 

4. Model reviews were conducted where the 
models were tabletop reviewed by a team of 
personnel with a range of operations and 
spacecraft background. This added 
confidence that no incorrect parameters or 
assumptions were represented in the model. 

for example, are often specified 
times relative to two events: 

We were also rovided with the actual 
downlinked te P emetry that resulted from the 
execution of the science observation 
request. This telemetry is not only visually 
com ared to the telemetry generated by 
AS$ but it can also be “played back” to the 
ASE software to simulate the effects of 
executing sequences. The command 

of generating commands and telemet , 

telemetry, and fixing errors. These 
comparisons against ground generated 
sequences were reviewed by personnel from 
several different areas of the operations 
staff to ensure acceptability (e.g. overall 
operations, guidance, navigation and 

comparing with actual commands an 7 



Table 1. Sample safety analysis for two risks. 

High-level activity 
decomposes into turn 

on and turn off 
activities that are ki th  

the maximum 
separation. 

Rules monitor the 
“on” time and issue a 
turn off command if 

left on too long. 

Operations 

CASPER 

Maneuvers must be 
planned at times 

when the covers are 
closed (otherwise, 

instruments are 
pointing at the earth) 

Constraints prevent 
maneuver scripts 

‘from executing if 
covers are open. 

SCL 

FSS 

Instruments overheat 
from being left on too 

long 

Instruments exposed 
to sun 

For each turn on 
command, look for the 

following turn off 
command. Verify that 

they are within the 
maximum separation. 

Verify orientation of 
spacecraft during 

periods when 
instrument covers are 

open. 

Fault protection Fault protection will 

An. interesting aspect of model development is 
the, use of code generation techniques to derive 
SCL constraint checks fiom CASPER model 
constraints. In this approach, certain types of 
CASPER modeling constraints can be translated 
into SCL code to ensure activity validity at 
execution time. If the CASPER model specifies 
that activities use resources, this can be translated 
into an SCL check for resource availability before 
the activity is executed. If the CASPER model 
specifies a state requirement for an activity, one 
can auto-generate a check to see if that state is 
satisfied before executint the activity. 
Additionally, if the CASPE model specifies 
sequential execution of a set of activities, code 

enerated so that SCL enforces this 
sequentia can be f execution. 
For example, in calibrating the Hy erion 
instrument, the solid state recorder (WARP7 must 
be in record mode and the H perion instrument 
cover must be “open”. Be Y ow we show the 
CASPER model and the generated SCL 
constraint checks. 

/ /  Hyperion calibration 
activity hsi-img-cal 

t 
durat caldur; 
/ /  schedule only when the WARP is in record 
/ /  mode, recording data, and 
/ /  when the hyperion cover is open 
reservations = 

wrmwmode must-be “rec“, 
ycovrstat must-be ”closed”; 

/ /  start and stop the instrument 
decompositions = 

yscistart, yscistop 
, where yscistop starts-after 

start of yscistart by caldur; 

1 

-- Hyperion calibratidd 
script hsi-img-cal caldur 

-- verify that the WARP is in record 
-- mode, recording data, and 
-- that the hyperion cover is open 
verify wrmwmode = rec 

and ycovrstat = closed 
within 5 seconds 

‘ .  
-- start and stop the instrumend 
execute yscistart 
wait caldur sec 
execute yscistop 

end hsi-img-cal 

Figure 2. Sample model and script for Hyperion calibration. 

Note that this generated code also enforces the 
sequential execution of the “yscistart” and 
“yscistop” activities, separated by “caldur” 
seconds. This shows how code is automatically 
generated fiom a CASPER defined temporal 
constraint over two activities. 
As another example, when initiating the WARP 
recording, there is a limit on the total number of 
files on the WARP recorder (63 . In CASPER 

created. In SCL, code is auto-generated to verify 
that that man files can be created without 
exceeding the P de number limit before the WARP 
recording activity is allowed to be executed. 

we define the constraint that “w R ” new files are 



/ /  Start the WARP recording 
activity wrmsrec 

I 
I 

... 
reservations = 

/ /  reserve the required number of 
/ /  files on the WARP 

wrmtotfl use wfl, 
/ /  change the warp to record mode when 

/ /  complete 
wrmwmode change-to "rec" at-end, 

. . .  
1 

xband groundstation 

xband controller 

ACS mode 

-- Start the WARP recording 

script wrmsrec 
... 

verify 
wrmfreebl wrmtotfl + wfl <= 63 
and wrmtoti-1 + wfl >= 1 and 

... 
end wrmsrec 

unknown 

enabled 

nadir 

Figure 3. Sample model and script for WARP recording. 

4. TESTING ENFORCEMENT OF SAFETY 
As demonstration software, the effort available 
for testing our agent has been severely time and 
resource constrained. Therefore we decided early 
in the project that testing should focus 
on ensurin that our agent executef%%$? 
Missing a d ata collect would be an unfortunate 
althou h tolerable failure - endangering the safety 
of the E 0- 1 spacecraft would not. 
Leveraging the completed safe7 analysis, we 
approached validation by breaking our testing 
strategy into three verification steps: 

1. CASPER generates lans consistent both 
with its internal mo B el of the spacecraft 
and SCL's model and constraints. 

2. SCL does not issue any commands that 
violate the constraints of the spacecraft. 

3. Both models accurately encode the 
spacecraft operational and safety 
constraints. 

The first two steps build confidence that the ASE 
software executes within the constraints levied by 
the spacecraft model, while the third step verifies 
that the model encodes sufficient information to 
protect against potential safety violations. 

We validate these requirements by extensive 
testing of the autonomy s o h a r e  on generated 
test-cases, using simulation and rule-based 
verification at each step. Note that the steps 
enumerated above, and the test cases described 
below, address only the to -two layers of the 
onboard autonomy software [CASPER and SCL). 
The existing EO-1 flight software testing and 
validation is addressed by a separate, more 
conventional, test plan. Additionally both 
CASPER and SCL are mature and tested software 
systems. The majority of the development effort 
for ASE was in the two internal models that adapt 
the systems to EO-1. Therefore the testing 
strate y outlined below focuses the majority of 

4.1 Test Case Parameters 
Each EO-1 test case covers seven days of 
s acecraft operations including multiple 

Each observation 
op ortunity, referred to as a CASPER 
sc K edulable window, represents an opportunity to 
schedule one or more science data collections or 
downlinks. The test cases account for variations 
in the mission and science objectives (mission 
scenario paramete 
s acecraft (spacecra 

Mission scenario par 
level planning goals passed tb CASPER. They 
are derived from a combination of the orbit and 
the science objectives uplinked from the ground. 
Mission scenario parameters specify when targets 
will be available for imaging, the parameters of 
science observations (i.e. number of targets to 
image and science analysis algorithms we wish to 
execute), and reactions to observed science 
events (i.e. follow-up observations). 

Spacecraft state parameters encode the state of 
EO-1 at the start of a schedulable window, and 
changes to the spacecraft as a result of our agent's 
actions. Changes to these parameters are 
simulated using a software simulator that models 
spacecraft state. 

the e f f  ort on exercising these models. 

o I& servation opportunities. 

c K anges to the spacecraft i:  : 

Table 2. Sample spacecraft state parameters. 

I Parameter 1 Expected Initial State I 

I unknown I target selected I 
I warp electronics mode stndops I I 



warp mode 1 science 
algorithm 

standby 1 
fixed science goal 

start not-specified any 

number of 
science goals 1 per orbit >2 1-2 

warp allocated 0 32K blocks 

warp bytes allocated 1 0 I 
warp num files 

fault protection 

eclipse state 

target view unknown I I 
hyperion instrument power 

hyperion imaging mode 

hyperion cover state 1 closed I 
I I 

ali instrument power 1 on 
I 

ali active mechanism telapercvr I ' 
I 

ali mechanism power disabled 

ali fpe power 

ale @e data gate 
I 

ali cover state closed 

groundstation view unknown 

mission lock 

Table 3. Midsion-scenario parameters. 
_ _ ~  

Nominal Off-nominal 

3-5 

Parameter Extreme 

schedulable 
windows 0-3 5+ 

2-7 
~~ 

start of orbit 

expected 
time of 
science 
analysis 

anytime in 
orbit, 1 per 

orbit 

~~ 

___- 

orbits between 
windows 

window start- 
time 

0,8+ 1,s 

+/- 10 min 

+/- 10 min 

1 per 3 orbits 

window 
duration 

image start 

image duration 8 s +/- 2 +/- 5 0,60 

groundstation 
AOS 

anytime in 
orbit, 1 per 

orbit 

AOS + 10 
min +/- 1 

60 min after 
orbit start 

30 min 

~ _ _  

~~ 

~~ 

1 per 3 orbits 

groundstation 
LOS +/- 3 

eclipse start +I- 5 

eclipse duration +/- 5 



a minimum value, an “off-nominal-min” value at 
the boundary between the off-nominal and the 
extreme, a nominal value, an “off-nominal-max”, 
and a maximum value. 

based on the defined distributions. Furthermore, 
by modifying the construction of the arameter 
distribution, we were able to create of!-nominal 
and extreme test sets that would stochastically 
favor some parameters to choose values outside 

4.2.3 Environmental Test Set 
We further extended the stochastic test sets 

og-nominal min off-nominal max described above to include execution variations 
Figure 4. Parameter Decompositions based on the parameter qistributions. The 

spacecraft simulator was modified to allow as 
iations to expected prameter values. 

argeter-value assignments. es changes to paranieta of the 
current activity, and varies’ the value 

the returned based on the provided parameter 
distributions. Again nominal, off-nominal, and 
extreme test sets were generated that instructed 
the ‘simulator to vary arameter’ values within the 

Finally we needed a way to how the system 
res onded to unexpected or exogenous events 

outside of the CASPER model. Unlike the 
initial-state and execution-based testing described 

min max of their nominal range. 

ee sets of test cases: 
test cases that exercise the five , execution of qctivifies the simulator 

okb:AmL? 

itial 1 >. CoResPonding value c r ass. ~ 

wit !I in the environment. ‘ These events could b’e 

Variations allow for Simple tests Of Of!-nOminal do not commanded 

, Using the parameter decomposition we designed fault conditions in the’ spacecraft or events 
test cases off the baseline scenario that exercised 
the .five values for each parameter while holding 
all other Parameters constant. Sin le- arameter at any time, and 

situations (variations that allow defects to be action event. To 
easily traced back to the source). our spacecraft 
The sin le-parameter ap roach enerates test sets simulator the ability to change the value of any 

since we decomposed each of our relative to the execution of an activity, to a fixed 
into five re resentative values, for N parameters, value or a value based on the distributions 
we have 5 test cases or 4N+1 unique test cases described above. We added small-variation 

stochastic test sets. test set of approximately 150 test cases. 

4.2.2 Stochastic Test Set 4.3 Testing Procedure 
Our Coverage test set exercises individual The test cases generated using the Procedure 

Outlined above were used in unit testing the 
Eetween multiple off-nominal parameters or even individual agent layers, as well as integrated 
multiple varied wthin their nominal s stem testing. Unit testing verifies primarily the 

&st two decompositions of our test lan - that ran es. In order to test more nominal scenarios, 
a n t  also gain coverage in the off-nominal CASPER command within its mode, and SCL 
scenarios outside of the five representative did not constraints. 

system, and that the 
distributions. commanded sequences safely achieve the mission 

o bj ec tives . 
Parameters were given normal distributions 
around their nominal value, with The Vast majority Of tests Were rUn On the solaris 
deviations half the width of the off-nominal range and Linux platforms, as they are the fastest and 
(such that 95% of expected values will be either most readily available. However, these test the 
nominal or off-nominal). Nominal test sets were software under a different operating system, and 
then generated assigning values to parameters therefore are Primarily usefid for testing 

that sca B e linearly with t K f  e num er of parameters. parameter, at either an absolute time or time 

h J 
as N of these will be t e same nominal test set). events (within appropriate off-nominal and 
For the EO-1 science agent this yields a baseline nominal Classes) to O W  nominal and Off-nOminal 

arameters, but does not exercise the interactions 

P 
values, we devised a procedure for generating h t e  rated testing verifies that these constraints 
stochastic test sets based on parameter value hol c f  within the 



assumptions in the CASPER and SCL models. software simulator that monitored activities 
The o erating system and timing differences are committed by CASPER and executed by SCL. 
signi P icant enough that many code behaviors This simulator checks the timing, state, and 
occur only in the target operating system, resource constraints of the activities against those 
compiler, and timing of interest. Therefore every that are encoded in the CASPER model. The 
effort was made to extensively validate the agent flight testbeds used a higher-fidelity “Virtual 
on higher fidelity testbeds. Satellite (VSat)” simulator, developed 

Test Description 

Onboard cloud detection 

Onboard commanding path 

CASPER ground generated commands 
executed onboard 

Software jumping and loading 

ASE autonomously acquires dark 
calibration image and performs 
downlink 

ASE autonomously acquires science 
images and performs downlinks 

ASE autonomously analyzes science 
data onboard and triggers subsequent 
observations 

inde endently from the autonomy software, -for 

simulator modeled the spacecra 
subsystem level, includin s stems, states, and, 
resources not modeled by 8sy A PER or SCL. 
Recalling that our primary testing ob‘ective was 

we developed a separate “safety monitor” that 
watched only for violations of the safety and 
,operations constraints. The safet monitor was 
developed with no 
SCL, models, and the actual spacecraft 
commands issued e autonomy software 
(isolated black-box testing), These commands 
were fed into state machines that monitored each 

veri P ication of command sequences. The VSat 

to verify that our agent commanded E! 0-1 safely, 

dge o f t  h e CASPER or 

Table 4. Testbeds available to validate EO-1 agent. 

Low - can test model but 

Test Date 

March 2003 

May 2003 

July 2003 

August 2003 

October 2003 

January 2004 - 
present 

April 2004 
(expected) 

2.5 GHz I 

Moderate -runs flight 

JPL Flight Testbed 

RAD 3000 

,,:-L 

I ‘ .  
I I 

Testbed 

Mongoose M5, 

12MHz I I I 
On the Linux, Solaris, and GESPAC testbeds we 
used an automated test harness to setup, execute, 
and evaluate the results of each test run. The test 
harness ran over ten thousand simulations during 
our validation process. 
The number of integrated test cases we ran before 
each upload was limited by available testin 

upload opportunity. To ensure stability, we 
implemented minimum requirements on the 
number of test cases that must execute without an 
identified failure before a build was cleared for 
fli ht. These requirements varied by platform as 

Linux/Solaris, 1 month on the GE PAC single 
board computers, and 1 week on the flight 
testbeds. 

4.4 Success Criteria 
To be considered successful a test run must not 
violate any spacecraft, o erations, or safety 
constraints. On the Linux, 8 olaris, and GESPAC 
testbeds these constraints were checked by a 

resources and the time remaining before eac a 

fo f lows: 3 years of simulated o erations on 

of the safety and operations constraints. Any 
violations that were discovered were considered 
high-priority defects. 

5. STATUS & DEPL 
The ASE software has 
to full operations with the 
below. 

ily progressing 
milestones listed 

~ 

The on1 step remaining for full operations is the 

planning and execution. This software is 
currently in integration and test and is expected to 
be read for flight in the April 2004 timeframe. 
When t&s software build is ready it will be flown 
until September 2004 and will be used to acquire 

flight o f the integrated science with autonomous 



as many science-triggered scenes as resources 
allow. 

[5] S. Chien et al, EO 1 Autonomous 
Sciencecraft Ex eriment Safety Analysis 
Document, ZOO!. 

6. CONCLUSIONS 
This paper has described the design and 
validation of a safe agent for autonomous space 
science operations. First, we described the 
challenges in developin a robust, safe, spacecraft 
control agent. r Secont we described how we 
used a layered architecture to enhance redundant 
checks for agerif safety. Third, we described our 
model development, validation, and review. 
Finally, we described our test plan, with an 
emphasis on verifying agent safety. 

D. Cohen; Dalal, S.; Fredman, M.; and 
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Engineering 23(7):43 7-444. 
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