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Abstract 

The Mars Exploration Rover Spirit recently set a record for the furthest distance traveled 
in a single sol on Mars. Future planetary exploration missions are expected to use even longer 
drives to position rovers in areas of high scientific interest. This increase provides the potential 
for a large rise in the number of new science collection opportunities as the rover traverses the 
Martian surface. In this paper, we describe the OASIS system, which provides autonomous 
capabilities for dynamically identifying and pursuing these science opportunities during long- 
range traverses. OASIS uses machine learning and planning and scheduling techniques to 
address this goal. Machine learning techniques are applied to analyze data as it is collected 
and quickly determine new science gods and priorities on these goals. Planning and scheduling 
techniques are used to alter the rover’s behavior so that new science measurements can be 
performed while still obeying resource and other mission constraints. We will introduce OASIS 
and describe how planning and scheduling algorithms support opportunistic science. 

A 

1 Introduction 
On Sol 36 of the Mars Exploration Rover mission, the Spirit rover successfully performed its first 
autonomous traverse using obstacle avoidance software. During these traverses, the rover acquires 
hazard camera (a.k.a. hazcam) images to  look for obstacles and make decisions about the direction 
to travel. While there is valuable engineering information in these images, there is also a potential 
wealth of science data. However, by the time these images are downlinked, the rover may be far 
from the site of interest. In addition, future missions may not downlink these images, in which case 
the science data could be lost. As the length of autonomous drives increases so does the possibility 
of passing over some important scientific data. Furthermore, there are short-lived events, such as 
dust devils, that cannot be adequately studied if the rover must wait for instructions from Earth. 

To avoid the potential loss of valuable science, we are developing onboard techniques to support 
opportunistic science. We are creating a system called OASIS (Onboard Autonomous Science 
Investigation System) that integrates science analysis and planning to enable the rover to detect 
potentially interesting science events and re-task the rover to respond appropriately. OASIS includes 
a science analysis unit that performs onboard processing of collected science data. When a science 
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opportunity is detected, one or more requests are sent to the planning and execution system which 
attempts to accomplish these additional objectives while still achieving current mission goals. 

Opportunistic science poses significant challenges for an autonomous planning and execution 
system. In many ways; the challenges of handling opportunistic science are similar to  dealing with 
unexpected events and anomalies during plan execution. When an autonomous system detects an 
anomaly, such as a traverse taking longer than expected or a science activity consuming more power 
than predicted, the system must assess the impact this event will have on its ability to complete 
other mission objectives. If necessary, the system will revise the plan in an attempt to achieve as 
many of the remaining mission objectives as possible, or enter safe mode and wait for assistance from 
the ground team on Earth. Similarly, when an opportunistic science event arises, the autonomous 
system must assess the impact that accomplishing these new objectives would have on its current 
mission goals and, if feasible, alter its plan so that it can achieve these new objectives while still 
accomplishing the original mission goals. 

As with anomalies, it is difficult to predict when a science opportunity will mise and, hence, 
what the state of the rover will be when the opportunity presents itself. As a result, the specific 
state of the rover, including its location, resource availability and resource constraints, will not be 
known ahead of time. It can also be difficult to predict what type of science oper,ation: will be called 
for ahead of time. For example, depending on the type of event, the science analysis software may 
request an additional image or a spectrometer measurement. The different observations types place 
different demands such as time, power and memory, on the rover. Because of these uncertainties, 
it is difficult to determine ahead of time which opportunities can be acheved and what steps need 
to  be taken to accomplish the new science objectives. 

Given the similarities between handling anomalous events and opportunistic science, we were 
able to leverage our previous work with the Continuous Activity Scheduling, Planning and Re- 
Planning (CASPER) system as a basis for our opportunistic science planning system within OA- 
SIS (Estlin et a1 , 2002). 

In contrast to anomalous events, CASPER has more control over opportunistic science. In 
particular, the system can decide whether or not to pursue the opportunities that are identified. 
Much of our work on extending CASPER to support opportunistic science has been in enabling 
the system to make decisions about whether or not to pursue opportunistic science and which 
opportunities to accomplish. Our extensions include a Science Alert protocol to enable the data 
analysis algorithms to communicate new science goals to the planner and a set of plan modification 
functions to assist the planner in reasoning about these new objectives. 

In the next section we provide an overview of our integrated science analysis and planning 
system that supports opportunistic science. We will then describe a series of scenarios that we 
have used to develop and test our system in simulation and on rover prototype hardware in the 
Jet Propulsion Laboratory Mars Yard. These scenarios demonstrate our current capabilities in 
responding to opportunistic science events. 

2 OASIS 
Our initial emphasis in OASIS has focused on image analysis and the characterization of surface 
rocks. Rocks are among the primary features populating the Martian landscape and the understand- 
ing of rocks on the surface is a first step leading to more complex regional geological assessments. 
Figure 1 shows the main components of the OASIS system and how they interact to analyze images 
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of rocks and re-task the rover to respond to opportunistic science events. OASIS consists of 
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Figure 1: OASIS architecture. 

Feature Extraction: detects rocks in images and extracts rock properties (e.g. shape and texture). 

Data Analysis: uses extracted features to assess the scientific value of the planetary scene and to , 
generate new science objectives that will further contribute to this assessment. 

Planning and Scheduling: dynamically modifies plan in response to new science requests. 

The feature extraction and data analysis components of OASIS have been described previously 
in (Castano et al., 2004). Here we will give a brief overview of these components and concentrate 
on the planning and scheduling unit and how it supports opportunistic science. 

2.1 Feature Extraction 
The first step in the OASIS system is analyzing rock features from images taken by rover cameras 
as the rover traverses. The image is segmented using a rock detection algorithm based on edge 
detection and tracing. Next, a set of properties is extracted from each rock. Our feature extraction 
priorities are based upon our knowledge of how a geologist in the field would extract information. 
Important features to look for and categorize include albedo (an indicator of rock surface reflectance 
properties), visual texture (which provides valuable clues to mineral composition and geological 
history), shape, size, color and arrangement of rocks. Currently our system identifies the first three 
of this set; future work will expand this to cover additional features. 

2.2 Data Analysis 
After features have been extracted from each rock, OASIS runs a set of data analysis algorithms 
to look for interesting rocks. Two of these algorithms can result in the generation of science alerts: 
key target signature and novelty detection. 
Key Target Signature: enables scientists t o  efficiently and easily stipulate the value and impor- 
tance of certain features. Scientists often have an idea of what they expect to find during a rover 
mission and/or are looking for specific clues that reflect s i p s  of life or water (past or present). 
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Using this technique, target feature vectors can be pre-specified and an importance value assigned 
to each of the features. Rocks are then prioritized as a function of the weighted Euclidean distance 
of their extracted features from the target feature vector. 
Novelty Detection: detects and prioritizes unusual rocks that are dissimilar to previous rocks 
encountered. We have looked at three different learning techniques for novelty detection: distance- 
based using k-means clustering, probability-based using Gaussian mixture models and discrimination- 
based using kernel one-class classifier. 

stop-and-callhome 
tx = real; ty = real; t z  = real; 

2.3 Science Alert Protocol < 

dat a-sample-request 
priority = ant; 

Using the above algorithms, the data analysis software can flag rocks that should be further analyzed 
and produce a new set of measurement goals. We call this capability the science alert, since it alerts 
other onboard software that new and high priority science opportunities have been detected. 

A science alert may involve several different levels of reaction. The most basic reaction is to 
adjust the rover plan so that the rover holds at the current position and the flagged data is sent back 
to Earth at the next communication opportunity for further analysis. The next level of reaction 
would likely be to collect additional data at the current site before transmitting data to  Earth. 
Further steps include having the rover alter its path to get closer to objects of interest before taking 
additional measurements. These operations would provide new data that could not be obtained 
through image analysis alone. 

The data analysis unit uses the science alert protocol shown in Figure 2 to communicate op- 
portunistic science requests to  the planner. The protocol consists of two message types. When the 
rover receives a Stop and Call Home message, it responds by altering its plan so that it remains 
near the target location (tx, ty, tz )  until the next communication opportunity. The Data Sample 
Request message represents a request for an additional science measurement. In addition to  the 
target location, this message includes a priority. If multiple data sample requests are received, the 
priority is used to decide which alerts to give preference to  in the case that they cannot all be 
achieved within the current time and resource constraints. In future work, we will also use prior- 
ities to compare the value of new science opportunities with objectives already in the plan. Data 
Sample Requests also specify the type of measurement (e.g. image, spectrometer, 
be collected. 

Figure 2: The science alert protocol. 

2.4 Planning and Execution 

The new science targets are passed to onboard planning and scheduling software that can dynami- 
cally modify the current rover plan in order to  collect the new science data. This component takes 
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as input the new science requests, the current rover command sequence (or plan), and a model 
of rover operations and constraints. It then evaluates what new science tasks could be added to 
the current plan while ensuring other critical activities are preserved and no operation or resource 
constraints are violated. 

Planning and scheduling capabilities in OASIS are provided by CASPERm (Estlin et al., 2002; 
Chien et al., 2000), which employs a continuous planning technique where the planner continually 
evaluates the current plan and modifies it when necessary based on new state and resource infor- 
mation. Rather than consider planning a batch process, where planning is performed once for a 
certain time period and set of goals, the planner has a current goal set, a current rover state, and 
state projections into the future for that plan. At any time an incremental update to the goals or 
current state may update the current plan. This update may be an unexpected event (such as a 
new science opportunity) or a current reading for a particular resource level (such as power). The 
planner is then responsible for maintaining a plan consistent with the most current information. 

A plan consists of a set of grounded (i.e., time-tagged) activities that represent different rover 
actions and behaviors. Rover state in CASPER is modeled by a set of plan timelines, which contain 
information on states, such as rover position, and resources, such as power. Timelines are calculated 
by reasoning about activity effects and represent the past, current and expected state of the rover 
over time. As time progresses, the actual state of the rover drifts from the state expected by the 
timelines, reflecting changes in the world. If an update results in a proble such as an activity 
consuming more memory than expected and thereby over-subscribing RAM, CASPER re-plans, 
using iterative repair (Zweben et al., 1994), to address conflict. 
Plan optimization: CASPER includes an optimization framework for rkasoning about soft con- 
straints. User-defined preferences are used to compute plan quality based.on how well the plan 
satisfies these constraints. Optimization proceeds similar to iterative repair. For each preference, 
an optimization heuristic generates modifications that could potentially improve the plan score. 

OASIS uses this optimization framework to decide how to respond to science alerts. A science 
alert comes into the system as an optional goals, which is a soft constraint indicating that the plan’s 
quality will be improved if the goal is achieved. Because it may not be possible to accomplish 
optional goals, CASPER protects the plan from corruption by saving a copy of the plan before 
optimizing. If the quality has not increased after a pre-defined number of iterations, the previous 
plan is restored, and CASPER tries optimizing again. To prevent CASPER from churning away 
endlessly on the same optional goal, we keep track of the number of times optimize attempts to 
satisfy it. After a certain number of times, CASPER gives up on the goal and throws it out. 
Responding to  science alerts: We created a set of plan modification functions that are invoked 
when the optimizer attempts to satisfy a science alert. How the plan is modified depends on the 
type of alert that is considered. When a Stop and Call Home alert is received, the planner alters 
the plan to remove any non-engineering critical activities. If the activities are already executing, 
the planner requests that the executive abort them. If the activities are scheduled in the future, 
the planner deletes them and resolves any inconsistencies created by these deletions. 

To achieve a Data Sample Request, the system must generate a plan that achieves the new goal 
without deleting existing activities. It adds the new goal to the plan and attempts to resolve any 
conflicts that might arise. For example, the planner might need to add a traverse activity to get to 
the location of interest. As with a Stop and Call Home request, the planner must abort currently 
executing activities, but it does not delete activities that are scheduled to be executed in the future. 
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3 Testing and Evaluation 
We created several scenarios to develop and test OASIS opportunistic science capabilities. We will 
use four scenarios to highlight the system’s current abilities. All scenarios begin with the map show 
in Figure 3 (a). Here, the rover must take an image of the rock at the far right of the map and 
downlink the data to Earth. Figure 3 (b) shows an excerpt from the plan to accomplish this goal. 
The rover will traverse to the rock, take an image and perform the downlink. To facilitate testing, 
we created a science alert generator that sends science alerts at pre-determined times. We used this 
capability with the following scenarios to send different alerts as the planner executes the plan. 

Time --+ 

(4 map (b) plan excerpt 

Figure 3: Initial plan for scenarios. 

Scenario 1: Star and Call Home In the first scenario, the planner receives a Stop an Call’ 
Home alert in the middle of the traverse. Figure 4 shows the results. The traverse is aborted and 
the image is deleted. The downlink is tagged as being engineering-critical, so it is preserved in the 
plan. It is not moved up in time as it is temporally constrained at a specific time. 

i 
(4 map (b) plan excerpt 

Figure 4: Results for scenario 1: stop and call home 

Scenario 2: Data Sample Request This time the planner receives a Data Sample Request in 
the middle of the traverse. After the traverse is aborted, it is able to insert a new traverse to the 
new science target along with an image activity and a traverse to get back to the original goal. 
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In order to complete opportunistic science, the planner must be able to  find sufficient time in the 
schedule to perform these extra activities. Extra time might be put into the schedule specifically to 
allow for opportunistic science. Alternatively, the rover may be able to  take advantage of extra time 
put in the schedule due to conservative estimates of activity durations. This extra time is commonly 
added to  mission schedules to  help increase robustness. Often; temporal padding is added between 
activities in case it takes the rover longer than expected to complete tasks. The planner may also 
use over-estimates of how long activities take to perform. If, for example, the rover traverses faster 
than expected, the planner can make use of this spare time for opportunistic science. We have 
tested with both possibilities. The planner can move activities around, if permitted by temporal 
constraints, to take advantage of extra time in the schedule. We also experimented with traverses 
going better than expected by having the rover (either simulated or real) drive faster than the 
planner predicted. In this case, the planner takes advantage of the extra time gained during the 
traverse to insert opportunistic science activities. Figure 5 illustrates the latter approach in which 
extra time is gained because the rover traversed faster than expected. 

’ *  

(4 map (b) plan excerpt 

Figure 5: Results for scenario 2: data sample request 

It should be noted that a third possibility of extra time is to delete other activities in the schedule 
to make room for opportunistic science. We will explore this option in future work. 
Scenario 3: Data Sample Request that cannot be achieved This scenario is identical to the 
previous except that the system begins in a slightly different state. In this case, the system has 
additional data in RAM. When the science alert is received, the planner finds that it cannot collect 
the extra data without over-subscribing RAM. Figure Figure 6 illustrates the problem found by the 
planner. As a result, the planner gives up on the alert and continues on to the original goal. 
Scenario 4: Multiple Data Sample Requests This scenario demonstrates the use of priorities 
when multiple alerts are received. The rover begins with an empty RAM buffer and receives three 
Data Sample Requests. Only two of these requests can be accomplished without exhausting memory. 
As seen in Figure 7 the two alerts with highest priority are included in the plan. 
Testing environments: We have successfully tested the planning system’s response to oppor- 
tunistic science with real, prototype rover hardware. These hardware tests were performed in the 
JPL Mars Yard using the Fido rover. 
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(b) plan excerpt 

Figure 6: Reason for not performing opportunistic science in scenario 3: cannot achieve request due 
to RAM over-subscription. 

. .  

(4 map (b) plan excerpt 

Figure 7: Results for scenario 4: multiple data sample requests. 

4 Related Work 
The idea of having a scientific discovery system direct future experiments is present in a number 
of other systems. Work on learning by experimentation, such as IDS (Nordhausen & Langley, 
1993) and ADEPT (Rajamoney, 1990), varied certain quantitative and qualitative values in the 
domain and then measured the effects of these changes. OASIS differs from these systems in 
that i t  interacts with the environment to perform experimentation, and it is specialized to address 
particular problems and scenarios in planetary science. OASIS is also integrated with a planning 
system, which constructs the detailed activity sequence needed to perform new science experiments. 

Several researchers have addressed methods for extracting features from data with the intention 
of performing the operations onboard a spacecraft. Gulick et al. (2001) presented methods for 
locating rocks in an image using information about the sun angle, identifying the horizon and 
recognizing layers. There has also been work on developing a framework for feature extraction 
and event detection for use onboard Earth orbiting satellites (Tanner et al., 2001). Our work has 
specifically focused on identifying and analyzing rocks in grayscale images thus far and, in contrast 
to the work mentioned here, takes the next step of using the feature extraction to determine desirable 
additional actions a rover could autonomously take. 

. 
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The objectives of OASIS are similar to those of the Autonomous Scienecraft Experiment (ASE) (Sher- 
wood et al., 2003) which also uses science analysis to generate additional goals for a planner. OASIS 
differs from ASE in the types of feature extraction and data analysis that are performed. In addition, 
while ASE has focused on planning for orbiter missions, the focus for OASIS has been on ground 
operations. To support this type of planning OASIS must deal with the high degree of uncertainty 
inherent in ground operations and integrate path planning into the planning and scheduling process. 
Finally, in OASIS it is often necessary to temporarily halt currently executing activities, such as a 
traverse, in order to  accomplish new science goals. 

et al., 1997; Alami et al., 1998)). However, these systems generate plans with a batch approach 
where plans are generated for a certain time period and if re-planning is required, an entire new plan 
must be produced. In OASIS, plans are continuously modified in response to  changing conditions 
and goals. The CPS planner generates contingent plans which are then executed onboard a rover 
and can be modified at certain points if failures occur (Bresina et al., 1999). Since only a limited 
number of contingencies can be anticipated, our approach provides more onboard flexibility to new 
situations. If a situation occurs onboard for which there is not a pre-planned contingency, the rover 
must be halted to  wait for communication with ground. 

A number of other systems have used planning methods to coordinate robot behavior (e.g. (Bonasso 

5 Conclusions I .  

OASIS supports opportunistic science by integrating data analysis algorithms, which identifies po- 
tentially interesting science measurements, with planning and scheduling algorithms, which enables 
the rover to respond to these new requests. Our current system has been tested with several scenar- 
ios in simulation and on prototype rover hardware. In these scenarios we demonstrate a spectrum of 
responses to opportunistic science from halting activity and waiting for communication with Earth, 
to  acquiring additional measurements and proceeding with the original mission objectives. 

We are still developing OASIS and there are several capabilities we will be adding. One of the 
challenges in planning for opportunistic science is finding “spare” time in the schedule in which 
new activities can be inserted. Currently, we either have the planner add slack time to the schedule 
during initial plan creation or we allow the rover to make up time by traversing faster than expected. 
In future work we will consider allowing the system to plan ahead for opportunistic science so that 
it can decide to schedule extra time in some situations but not in others. This will have the benefit 
of allowing ground personnel to control when and how much opportunistic science is permitted. 

Currently, the planner preserves the original mission goals when attempting to perform oppor- 
tunistic science. We will relax this constraint and allow the system to  use priorities to determine 
when it is appropriate to achieve opportunistic science at the cost of existing goals. There are sig- 
nificant challenges with introducing autonomous techniques into the mission operations culture. We 
are taking steps to address this by introducing MER scientists to off-line versions of our software. 
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