
Formal Methods and Software Reliability

Gerard J. Holzmann
JPL Laboratory for Reliable Software

CaliJbrnia Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91 006

Abstract
I n this position statement I briepy describe how the
software reliability problem has changed over the years,
and the primary reasons f o r the recent creation of the
Laboratory fo r Reliable Software at JPL.

1. Introduction

An often noted trend is that as computers are becoming
more powerful, continuing to follow the trend predicted
by Gordon Moore some forty years ago [6] , typical soft-
ware applications tend to grow in size and complexity,
and are therefore becoming harder to analyze thoroughly
Although code Size does not correlate too well with code
complexity, it is one of the simplest metrlcs available and
can therefore easily be used to confirm at least part of the
postulatcd trend.
The size of OS/360 was given in 1968 as 5 Million lines
of assembly level code (corresponding to approximately 1
Million lines of C code) [7] Today’s commercial operat-
ing systems arc usually estimated to have around 20 Mil-
lion lines of source code, which gives an increase of
roughly two orders of magnitude since 1968. Another
example, closer to home, IS for software analysis systems
The size of trace, the earliest predecessor of SPIN [4], in
1983 was 3,500 lines of C, while thc SPIN sources today
stand at close to 30,000 lines of C The increase is one
order of magnitude this time, since 1983.
At JPL we can also track the cvolutioii of flight software
for interplanetary spacccraft over a long period of time.
Doing so largely confirms these trends. From the Voyager
spacecraft in 1977 to the Mars exploration spacecraft
from 2004, the average size of flight software has, for
instance, increased from approximately 4,000 lines of
non-comment source to roughly 400,000 lines; an
increase of two orders of magnitude since 1977.
Though by itself impressive, this rate of increase is well
below the rate of increase in the speed of computers in the
same period of time. Following Moore’s law, the increase
of raw computer powcr has been almost four ordcrs of
magnitude since 1983, more than five orders of mag-
nitude (2”) since 1977, and approaching seven orders of
magnitude (223) since 1968 This means that, by a large
margin, computers are growing in power faster than pro-
grams grow in size. As confirmation of this trend, it can,
for instance, readily be noted that a compiler can today

process an average size program much faster, and produce
better quality code, than a compiler could do in 1968 for
the much smaller average size program from then.
Unfortunately, for software analysis purposes, complexity
is not just determined by program size.

2. Complexity and Reliability

Not just the size but also the basic structure of a typical
software application has changed over the years. Where
in the sixties software applications were mostly sequen-
tially executing, standalone programs, today both com-
mercial software and spacecraft software applications are
typically designed as multi-threaded, reactive systems: the
behavior of these systems i s not just determined by the
response to a fixed set of input data, it also depends on the
time of arrival of the inputs, and the many subtleties of
interleaved proccss exccution.
In general, any sufficiently interesting property of even a
basic, non-reactive, deterministic computer program (e.g.,
halting) is formally undecidable [SI. But this well-known
fact does not doom all attempts to perform some form of
program analysis. If, for instance, we fix the input, make
the program strictly finite state (e.g., by bounding the
maximum amount of memory that may be used) most
problems of interest do become decidable (including halt-
ing).
If all software applications would have remained in this
simple class of non-reactive, deterministic, closed and
finite-state systems, sophisticated program analysis meth-
ods might have completely replaced ad hoc testing tech-
niques by now. But real-life is much more interesting
than that. The non-determinism of a multi-threaded sys-
tem can increase the complexity of program verification
by an exponential amount, potentially using up all the
gains made by the similarly exponential increase in com-
pute power based on Moore’s law. A modern spacecraft
system, for instance, typically maintains over fifty concur-
rent threads of execution, as part of its basic behavior.
The conclusion of these observations is not that the battle
with software complexity cannot be won. The conclusion
is merely that if we cannot win the battle for software reli-
ability by exploiting the brute force of Moore’s law, we
will have to become smarter about how we design, ana-
lyze, and test software systems. All these trends
strengthen the opportunity for the further development,
and application, of formal methods. These observations
have provided the primary motivation for the recent

creation of a new Laboratory for Reliable Software
(LARS) at JPL.

3. The JPL Laboratory for Reliable Software

The role of LARS [lo] is to find ways to increase the reli-
ability of both flight and ground software for space mis-
sions by the application of state-of-the-art theories, tech-
niques, and tools, where necessary developing new theory
and harnessing them in tools that can be applicd in the
software development process. Within the scope of the
new lab are improvements in defect insertion methods in
the design phase of a project, as well as improvements in
defect detection methods based on design and software
analysis.
LARS builds on the success of some early application of
logic model checking techniques to flight software sys-
tems to detect design problems, as described in, for
instance, [1,3,5,8]. The scope of LARS, though, is signif-
icantly broader than applications of logic model checking
techniques. One of the early focus points for LARS is to
evaluate and further develop static source code analysis
techniques, by looking at the leading commercial
(www.polyspace.com, www.coverity.com) and academic
source code analysis tools, including also [2] as a minor
contender. LARS also targets improvements in early fault
detection techniques, for instance by the development of
improved requirements capture and analysis techniques,
and similarly it will investigate advanced run-time moni-
toring techniques in collaboration with colleagues from
NASA Ames Research Center.
As in most software systems, in spacecraft software even
a small coding error can have large consequences. Unlike
most earthly applications, though, the crash of a software
controller on a spacecraft that operates millions of miles
away from earth, could easily prove to be fatal, leading to
a complete loss of the spacecraft, or a significant loss of
the science return from a mission. Reliable software,
therefore, is not a negotiable option at JPL, that can be
weighed against market pressures; it is a firm require-
ment. It is the purpose of LARS to help JPL find, where
possible, or develop, where necessary, the best available
techniques that can secure truly reliable software systems.

Acknowledgements

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of Technol-
ogy, under a contract with the National Aeronautics and
Space Administration.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10

P.R. Gluck, G.J. Holzmann, Using Spin Mode1 Checking
for Flight Software Verification, Pruc. Aerospace Confer-
ence, IEEE, Big Sky, MT, USA, March 2002.
G.J. Holzmann, Static source code checking for user-
defined properties, Pruc. Integrated Design and Process
Teclinology (IDPT), Pasadena CA USA, June 2002.
G.J. Holzmann and R. Joshi, Model-driven software veri-
fication, Proc. I Itli Spin Workshop, Barcelona, Spain,
April 2004. Springer Verlag, LNCS 2989, pp. 77-92.
G.J. Holzmann, The Spin Model Checker: primer and rqf-
erence manual, Addison-Wesley, 2004.
E. Mikk, P. Pingree, G.J. Holzmann, D. Dams, and M.H.
Smith, Validation of mission critical software design and
implementation using model checking. Proc. 21st Digital
Avionics Systems Conference, IEEE, 27-3 1 Oct. 2002,
Irvine, California.
G. Moore, Cramming more components onto integrated
circuits, Electronics Magazine, Vol. 38, 19 April 1965,
pp. 114.117.
P. Naur and B. Randell, (Eds.), Software Engineering:
Report of a conference sponsored by the NATO Science
Committee, Garmisch, Germany, 7-1 1 Oct. 1968, Brus-
sels, 231 pp.
F. Schneider, S.M. Easterbrook, J.R. Callahan, and G.J.
Holzmann, Validating Requirements for Fault Tolerant
Systems using Model Checking, Proc. Int. Conjirence on
Requirement.r Engineering (ICRE), pp. 4-14, IEEE, Col-
orado Springs Co. USA, April 1998.
A.M. Turing, On computable numbers, with an applica-
tion to the Entscheidungsproblem, Proc. Lundm Muthe-
matical Soc., Ser. 2-42, 1936, pp. 230-265.
URL: http://eis.jpl.nasa.gov/lars

http://www.polyspace.com
http://eis.jpl.nasa.gov/lars

