
Using Software Security Analysis to Verify the Secure Socket Layer (SSL)
Protocol

John D. Powell
Jet Propulsion Laboratory, California Institute of Technology

John. Powell@pl. nasa.gov

Abstract

The National Aeronautics and Space Administration
(NASA) have tens of thousands of networked computer
systems and applications. Software Security
vulnerabilities present risks such as lost or corrupted
data, information the3, and unavailability of critical
systems. These risks represent potentially enormous
costs to NASA. The NASA Code Q research initiative
“Reducing Software Security Risk (RSSR) Trough an
Integrated Approach ’’ oflers, among its capabilities,
formal verlfication of software security properties,
through the use of model based verification (MBV) to
address software security risks. [1,2,3,4,5,6] MBV is a
formal approach to software assurance that combines
analysis of software, via abstract models, with
technology, such as model checkers, that provide
automation of the mechanical portions of the analysis
process. This paper will discuss:

The need for formal analysis to assure software
systems with respect to software and why testing
alone cannot provide it.
The means by which MBV with a Flexible
Modeling Framework (FMF) accomplishes the
necessary analysis task.
An example of FMF style MBV in the verlfication
of properties over the Secure Socket Layer (SSL)
communication protocol as a demonstration.

1. Introduction

Software security attacks are increasing, not only in
number, but in sophistication as well. Further, the risk
of the threat of security break-ins as a means for
conducting asymmetrical warfare (i.e. cyber-warfare)
has been identified as a probable scenario. With the
advent of cyber-warfare threats, the nature of the
attacker expands from individuals or small groups to
large, sophisticated, well h d e d organizations of paid
professionals whose sole job is to defeat security

measures and damage, or render useless, critical
software systems.

There are two fimdamental conditions that must be
considered when applying assurance activities to the
problems associated with software security.
0 First, a system that resides in a networked

environment is an open-ended system that has
limited control, at best, over the systems with
which it interacts and how that interaction takes
place.
Second, when a system experiences a break-in, it is
due to a purposeful and intelligent entity or
adversary engineering malicious events as opposed
to an unmotivated environmental event.

In this paper, the term motivated environmental
event is defined as an event directed at a system from
the environment that is purposely initiated by an
intelligent attacker to intentionally damage the system
or interfere with its intended operation. Conversely, an
unmotivated environmental event is an event that
naturally exists in the system’s environment and occurs
with some probability (frequent or rare) without regard
for the system or the damage it may or may not inflict.

2. The Need for Analysis

Unmotivated environmental events can be regarded
as having some probability of occurrence that is less
than 100%. A software system is built and tested
against those harmful environmental events that are
known, with priority given to those that are closer to
100% in probability of occurrence. Some unmotivated
events with very low probability of occurrence are even
ignored. Since unmotivated events in a software
system’s environment are not actively seeking out the
system, the risk from events with a low likelihood of
occurrence may be assumed as opposed to defended
against. However, a motivated event is the result of an
attacker actively seeking out harmful environmental
event sequences and purposefully initiating them to
harm vulnerable software systems. These harmfkl

http://nasa.gov

sequences, if known by an attacker, must be regarded
as having an occurrence probability of 100% because
they are purposefully set in motion. The only barrier
between the software system’s security measures and
the motivated environmental event is a lack of
knowledge on the part of attackers that the successfully
harmful event sequence(s) exist. Malicious adversaries
discover harmful event sequences, not through testing
but through a process of analysis of known parts of a
software system that includes:
0 Probing the system
0 Collecting Data
0 Analyzing the data to discover vulnerabilities.
0 Formulating exploits of the vulnerabilities.
The key point that is made clear by this process is that
the simple testing of previously known cases of system
exploitation is not the driving force that facilitates
dangerous new break-ins. This is due in large part to
the fact that most critical “trophy systems” that interest
attackers most are maintained by system security
professionals that have effectively guarded the system
against previously known exploitations in response to
past attacks. New exploits are derived ffom analysis of
system behavior in multiple contexts to discover an
interaction that has not yet been considered by an
organization’s security professionals.

Testing alone cannot provide assurance for software
security. Reliance solely on testing for improving
software security is a primary reason for the “attack
and patch” cycle in which the industry currently finds
itself. Since potential attackers employ analysis of a
software system, and its security defenses, to discover a
system weakness, organizations must make similar
types of system analysis a regular part of their system
security practices.

Testing, by an attacker, can only .be performed after
the harmful event sequences are identified. The only
time attacker testing takes place is in the form attacks
perpetrated against vulnerable systems. Thus, by the
time a test case is available for testing by the victim
organization the attack has already occurred. When an
attack is successful, patches are subsequently devised
by reverse engineering the attackers analysis ffom
information generated by the attack. The patches are
then tested against the test case produced by the
attacker’s analysis. However, by this time, attackers’
consistent focus on analysis has devised an entirely
new class of attacks.

The only way to increase assurance of a software
system’s security defenses is through analysis with
testing as a follow-on activity. Many software systems
and their security defenses are already under analysis.
Unfortunately, the current paradigm often involves

attackers performing the analysis. The system owners,
as opposed to attackers, must begin to perform analysis
of software systems and their defenses. This is the only
way to:
0 Provide assurance of software security.

Reduce reliance on the “attack and patch” cycle.
0 Achieve any anticipatory advantage over future

classes of attacks.
Technologies such as MBV and other formal methods
offer a means to perform these analyses.

3. Model Based Verification

MBV, as it is used in this research, makes use of
discrete finite models to verify critical system
properties. The FMF is a generic approach to modeling
and verification. However, the specific MBV and FMF
properties addressed in this paper focus on software
security pertaining to the SSL protocol.

Network security properties often focus on
characteristics that are manifested though the operation
of multiple software components operating
concurrently. The concurrent nature of the systems
results in an operational space that is too large to verify
by traditional testing techniques. MBV with the FMF
offers a method of verification of critical system
security properties early in the development lifecycle
before an implementation exists. This makes MBV
valuable because software security vulnerabilities
introduced in the early lifecycle phases are costly to
remove in later phases. A vulnerability that goes
undetected until after system deployment results in the
addition of cumbersome “patches” to mitigate the
vulnerability. These “patches” may introduce new
vulnerabilities in addition to mitigating the ones being
corrected.

3.1. Model Checking

MBV with the FMF uses Model Checking (MC) as
a core technology. MC verifications, based on discrete
finite models, can be used to verify and check
compliance to desired security properties. Many
security properties cannot be verified by test activity
alone. However, verification through analyses and
modeling at the design stage can increase the
confidence that the specification provides a sound base
for developing a secure application, system or
communication protocol. The analysis and modeling
process can begin early in the software development
life cycle and continue into implementation. Modeling
tools and languages used together provide a machine-
readable model that facilitates automated verification

X

I I
Figure 1: Concurrent Processes

...

I
Figure 2: Interleaving of Processes

of system properties. Models must be updated and re-
verified periodically, as requirements and designs
become more mature. Analysis of up-to-date models
can contribute to verification by testing programming
code through test case generation from the Model
Checking analyses. [8,9]

Software model checkers automatically explore all
paths from a start state in a computational tree (See
Figures 1 & 2). The computational tree may contain
repeated copies of sub-trees. State of the art Model
Checkers, such as SPIN, exploit this characteristic to
improve automated verification efficiency. The
objective is to verify system properties with respect to
models over as many scenarios as feasible. Since the
models are an abstract representation of functional
capabilities under analysis, the number of feasible
scenarios is much larger than the set that can be
checked during testing. Model Checkers differ from
traditional formal techniques such as formal proofs
(and theorem provers) by the following characteristics:

Model checkers are operational as opposed to
deductive
Model checkers provide counter examples
when properties are violated (error traces)
Their goal is oriented toward finding errors as
opposed to proving correctness since the model
is an abstraction of the actual system

The MBV techniques, using MC as a core
technology, exhaustively explores a system’s finite
operational state space. The objective is to verify
system properties over all possible system scenarios.
MC also provides counter examples when properties
are violated, which are then used as traces for test case
generation. [7,8,9]

MBV techniques, such as MC, are not without
drawbacks. These include:

0 MBV’s resistance to fast adaptation of system
models. This hinders MC’s ability to evolve a
system model in a timely manner when the
system definition is volatile.
The state space explosion problem inherent in
model checking. [101 The operational state
space that a model checker must search to
verify properties grows at an exponential rate as
the model becomes more detailed in response to
system’s that are large and/or complex.

0

3.2. The Flexible Modeling Framework

The FMF is offered as a means to bring software
security issues under formal control while mitigating
the drawbacks of MC discussed above. The FMF
seeks to achieve this by a divide and conquer approach.
As such, the FMF is a: 1) System for building models
in a component based manner to cope with system
evolution in a timely manner, 2) Compositional
verification approach to delay the effects of state space
explosion for larger and/or complex system models.

Modeling in a component-based manner involves
the building of a series of small sub-models. Then,
these components can be combined and verified over
system properties of interest in a compositional
manner.

The compositional verification approach used in the
FMF seeks to verify properties over individual model
components and then over strategic combinations of
them. The goals of this approach are to:

Infer verification results over systems that are
otherwise too large for MC from the results of
strategic overlapping subsets of the system in
the form of model component combinations.

0 Retain verification results from individual
components and component combinations to
increase the efficiency of subsequent
verifications.

4. Model Based Verification of the SSL
Protocol

SSLSecret L Func.

/
/

Figure 3: SSL Communication Protocol Model Component

As an example of a verification activity performed
at JPL using MBV with the FMF, the SSL protocol was
examined. The SSL protocol was modeled along with
three potential classes of attacks in a component based
manner. Properties of interest focused on the SSL
protocol’s ability to avoid falling prey to each class of
attacks by recognizing the onset an attack taking
appropriate action. The application of SSL protocol
against the attack classes at varying degrees of rigor
allowed by the SSL specification was analyzed by
using the FMF. It is important to note that the
verification of the SSL protocols resilience under
attack did not involve testing each individual known
instantiation of attacks but analysis of entire classes of
attacks simultaneously. Further, analysis of the varying
degrees of SSL rigor was a built-in side effect of the
FMF verification methodology of verifying multiple
overlapping component combination subsets during the
verification of SSL as a whole. This not only produced
results of SSL handling attacks but also identified the
portions of the SSL specification that are essential in
defending against each attack class.

Figure 3 shows how SSL model components can be
mixed and matched within the FMF to verify
correctness properties over multiple variations of SSL
behavior. Development of a single model containing all
possible behaviors can be counter-productive.
Combining behaviors that do not reasonably co-exist in

a system produces many false property violations. False
violations under those conditions would flood the
analyst with so much data to review that the timeliness
of verification results would be compromised. Further,
upon fmding a valid violation of a system property in
the environment of an overall model, the
counterexample will often be convoluted by irrelevant
interim model transitions. Thus, isolating and
recommending corrective action in that environment
becomes a long and tedious analysis task. When the
model is separated into variations through the use of
FMF, valid verification knowledge can be easily
extracted from the pattern of violations and non-
violations over the model variations. The FMF
approach is a means for determining critical system
functionality with regard to software security properties
thereby isolating vulnerable areas for corrective
actions. Finally, in an open system, such as the SSL
protocol and its environment, an all-encompassing
model will unduly stress the limits of the test platform’s
memory constraints due to excessive state space
explosion without the use of the FMF.

Four SSL correctness properties were verified over
the FMF model components. They are
1. The SSL secure communication shall initialize

eventually unless less an attack has successfully
inserted itself in such a manner that the resulting
secure communication will be compromised

Each communicating entity
will eventually achieve and
execute the exchange of secure
communication
Signed SSL Entities
(Certificates)
Unsigned SSL Entities
(No Certificates)

Non-SSL Client Server Entities

Table 1: Verification Results Summary

Replay DoS Man in the

Attack attack No Attack Middle Attack

Violation Violation Violation

Violation Violation

Violation Violation

No
Violation

No No
Violation Violation

No No
Violation Violation

2.

3.

Once secure communication is establishhed secure
contacts and responses will always be reached
A secure message that has been intercepted shall
be detected and not accepted by the SSL recipient
of the secure message
Under the rules for attacks, an attack may only
read unsecured messages or secured messages if
the SSL secret has previously been captured.
Securely communicating entities shall not reveal
their secret even during the handshake
initialization.

The significant verification results shown in Table 1

The absence of a violation in the “No Attack”
indicates that SSL entities communicate correctly
when no attack is present. This provides and early
baseline that the model is reasonable.
Only the SSL entities using signed certificates
recognized a Man-in-the-Middle Attack. The
violation in the “Man in the Middle Attack”
column corresponding to SSL entities with
certificates indicates that communication was
correctly aborted in before exposing secure
communication in response the recognized attack.

3. The Replay Attack failed to access secure
communication. The model did not distinguish
between behaviors of SSL versus non-SSL entities
in terms of the property verification. The
violations resulted from the attack starving off
effective communication between the entities.
Therefore, while the attack was successfid in
disrupting intended system operations it did not
specifically defeat SSL in that secure information
was not accessed
The DoS Attack did deadlock the system but did
not capture secure communication. The DoS attack
had effects similar to the Replay attack in that SSL
was not specifically defeated but the system was
disrupted.

4.

5 .

indicate that:
1.

2.

4.

Further analysis shows that Replay attacks and DoS
attacks are related at a very high level. In a hierarchical
classification of attack types, the Replay and DoS
attacks will likely fall into the same class of attacks at
the middle to upper levels of the hierarchy. This
information is valuable in making overall software
security recommendations during the development
lifecycle. At the design level, it is highly likely that one
set of principles will address both types of attacks. This
will simplify the problem in terms of building security
into the software system prior to its implementation.

5. Conclusion

Testing is an important part of building security into
software under development and responding to break-
ins and vulnerabilities discovered after deployment.
However, formal analysis must be employed along with
testing if organizations are to provide continued
assurance that critical networked systems are as secure
as possible. Formal analysis compliments traditional
testing by revealing the dangerous core catalysts of
attacks. Further, these catalysts often show that many
seemingly unrelated attacks could be treated as a single
class of vulnerabilities for purposes of securing critical
systems. MBV used in conjunction with the FMF offers
a means to analyze vulnerabilities, such as those
described in the SSL case study, early in the software
development lifecycle. By addressing vulnerabilities
and security issues before an implementation exists the
cost of correction is decreased while the resilience of
the system in the face of attacks is increased.

6. Acknowledgement

The work described in this abstract was carried out
at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration.

References
[I] D. Gilliam, et.al., “Reducing Software Security Risk
Through an Integrated Approach,” Proc. of the Ninth IEEE
1nt.Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (June, 2000), Gaithersburg, MD,

[2] G. Fink, M. Bishop, “Property Based Testing: A New
Approach to Testing for Assurance,” ACM SIGSOFT
Software Engineering Notes 22(4) Jul 1997.
[3]M. Bishop, “Vulnerabilities Analysis,” Proceedings of the
Recent Advances in Intrusion Detection (Sep. 1999).
[4] J. Dodson, “Specification and Classification of Generic
Security Flaws for the Tester’s Assistant Library,” M.S.
Thesis, Dept. of Computer Science, Univ. of California at
Davis, Davis CA (June 1996).
[SI D. Gilliam, et. al., “Development of a Software Security
Assessment Instrument to Reduce Software Security Risk”
Proc. of the 10th IEEE Int. Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
Boston, MA, pp144-149.
[6] D. Gilliam, et. al., “Reducing Software Security Risk
Through an Integrated Approach”, IEEE Goddard 26th
Software Engineering Workshop
[7] W. Wen and F Mizoguchi. Model checking Security
Protocols: A Case Study Using SPIN, IMC Technical
Report, November, 1998.
[8] J. Callahan, et. al. “Generating Test Oracles via Model
Checking,” NASNWVU Software Research Lab, Fairmont,
WV, Tech. Rpt #NASA-IVV-98-15.
[9] P. E. Ammann, P. E. Black and W. Majurski. “Using
Model Checking to Generate Test Specifications,” 2nd
International Conference on Formal Engineering Methods

[lo] G. Holmann. Design and Validation of Computer
Protocols. Prentice Hall 1990; ISBN: 0135399254 .

pp. 141 -1 46.

(1998) pp. 46-54.

