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What is Evolution? JPL

Evolution is a process of change over time.

1. Microevolution refers to limited Variatifon that takes
place in a type or family. Change happens within a
group, but the descendant 1s clearly Of the same type as

the ancestor.

« Artificial Selection of Dogs, Horses Cows Beets etc.
« Natural Selection of Peppered Moths “Super Germs”, etc.

2. Macroevolution refers to maJ or’ evolutlonary changes

such as the development of new types from previously

existing, but different, types. o
e Dinosaurs to Birds, Reptiles to Mammals etc

MKordon : > Ch T ,&/ }\fi": RN
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Microevolution Example

During the industrial revolution, Engl ish péppered moth
evolved from a light spotted color to dark grey color as
birch trees became darker with;sa'ot. |

* Diverse moth population (Random Varlatlon)
» Darker trees made light moths easier for birds to see
(Selection Pressure)

* Dark grey moth genes d()mma,ted the pOpulatlon
(Reproductive Advantage) . - |

M.Kordon



What 1s EvolutiohdfyComputing?-’p‘-

Evolutionary Computing seeks one or more optimal
solutions for a given system by using a computer program

to simulate the biological processes of nal‘ural Selectl()n

Evolution VS.

Evolutmnary Computing

Type solar_array {
Genetic Coding

int cell _type
int num_ strings

~ intnum cell per string }

Population
Generation

Survival of the
Fittest




Evolutionary Computmg JpPL
Classical Approach

0. Start with a randomly distributed 3. Create children i-b*y,c_o‘mblnlng parent
population of “parent” solutions parameters (crossover). Possibly randomly

mutate the child’s parameters.

4. Children now

n T n crossover example
become parents.

| v

1. Assign a fitness value to each parent 2. Randomly select two parents to reproduce

1 10 _> ,;
16 :
1

n 9

Note: the more fit ‘p‘a'réntsi should have a
hzgher probabzllzfy of being selected
MKordon 10 reproduce |



SPL

JPL Project Lifecycle

Advanged Studies Formulation implemeniation
Phases Pro-Phase & Phase A Phase B Phas :  PhaseE
; & Shudies | Mitin & System Praomingry Oasinn & B . smm ets .
Advareed S ks ﬁ«eﬁw“ Design g;&qsiﬂ ; umegx 1{&’@?“*‘“”" " j@m’””‘m‘? Reviews:
X H . .ARR'- Assembly, Test and Launch Operations Readiness
Kajor F Review
NASA - o e o L . -- ; ;
Enterprise Concept fritial Confinmation EIRR (1 Wession Briefing CDR - Critical Design Review
ters Froposal Conlirmation Haview mstpived) LRA CERR - Critical Event Readiness Review
Reviews ; : .
Review ﬁ‘é"ﬁi‘*w { DDR - Data Delivery Review
NASA EIRR - External Independent Readiness Review
IFAD A o & * ¢ e i = ETRR - Environmental Test Readiness Review
Reviews i G AR e I ) .
requited required) required) FSCDR FI.|ght System Cr|t|f;a.l Design Bevrew .
. FSPDR - Flight System Preliminary Design Review
Haior i HRCR - Hardware Requirements/Certification Review
,;p*;i : e ' . 'y IA% Independent Assessment
Projects/ Concopt PHMER SRR Probg Projest ARE MRFPLAX CERK DOR 1AR - Independent Annual Review
Reviews Review FLR COR ; . .LRR~ Launch Readiness Review
l MSCDR - Mission System Critical Design Review
gyzézi& = o MSPDR - Mission System Preliminary Design Review
¢ ERPOR soooR ETRR PSR ORR - MRR - Mission Readiness Review
MEPOR MBODR NAR - Non Advocate Review
! : ORR - Operations Readiness Review
Subsystem - o P
REV?’E}‘Z?E ' i Lo PDR - Preliminary Design Review
Inheriance Submvgten Subsyslom HRCRs PLAR - Post Launch Assessment Review
Hoviowis) PORs LRy SRORs 2 - 2
Poat B Prees Rt t BMSR = Preliminary Mission and Systems Review
ot SR ey LIRS P - S
Recorpeened Reguied o : . PSR Pre Ship Review
us part ot PORS sad ol CORs SRCR - Software Requirements/Certification Review
1 { ; ;
* ] SRR - System Requirements Reviews
Products Study Concept Preliminary Design Requirements Flight System, Assemble -t SolencerData e s st R et )
Project Plan Schedules Instruments Test
Sizing Specifications Designed & Launch
Costing Built
What to Build
Trajectory

Launch Date

Who Does Work *from PSO, EC Approved Life Cycle Chart Dec. 2001

M.Kordon



Trade Studies Pt

Trade Studies are conducted "~ Hypothetical Car-Buying Trade-Off Solutions
by flight projects to create 00 g
mission concepts with different e asible
trade-off solutions for mass, 0 |
cost, performance and risk.

.
S
=
[
O

F‘Pa‘siﬂble Region

Ideally, these solutions are | ns-
evenly distributed along the g
Pareto-optimal front. In practice
this 1s very difficult to achieve
particularly when there are
non-linear functions.

Multl—ObJectlve Optlmlzatlon ivolves
finding one or more optimal solutions when
there is more than one conflicting objective.
This means that a solutlon that is better in one
objective comprom1ses or trades off, other
objectives.
M.Kordon

Ultimately, project management
will use higher level information
to select one of the solutions.

*adapted from Multi-Objective Optimization using
Evolutionary Algorithms, K. Deb, pg 2, Wiley 2001



Command, Control,
and Communications
Architecture

Subject -

Concept |

Payload

Ground

Flight System
Element

Launch Element

*adapted from Space Mission Analysis and Design,
James Wertz, pg 11, 1999
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Flight System

JPL

The Flight System provides resourCeS to
the payload to accomplish the mission

Electrical Fower Subsystem
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Task Overview

SPL

1. MMPAT is a variable
fidelity software simulation

of the Electrical Power

Subsystem used in flight

operations

2. Given S/C trajectory, activity plan,
PEL and power subsystem sizes,
MMPAT can quickly and accurately
determine the state of power subsystem ~ oqo0

L
S Y

This approach can
be applied to other -
subsystems as well

(thermal, propulsion,
etc.) B

Jtate

M.Kordon

. ~4. Mission Designers and

Engineers will be able to
“automatically size

 components and select

technologies quickly based
“‘on anticipated performance

- of the subsystem rather than
. onworst case estimates

t

3. We are applying
'Evolutionary Computing

algorithms to MMPAT to help
design & optimize the power
subsystem design parameters



PERSON/MMPAT Int@ratlon JPL

0. PERSON reads in
initialization data

- | 2. For each member PERSOI\N (20 MMPAT reads in the
Sim Targets & calls MMPAT and gets trajectory and the

GA Parameters results ‘ ac‘ruvn’ry plan

[1. PERSON generates J O - _

- a population of parents
 0d 09

Best
Stiucture

‘ Python
 Interface |

Trajectory and
Activity Files

NEMO|

T Python |
| Interface |

4

User-Deﬁned
o Fltness Functlons

Gene
Fitnes:

(3. PERSON calls the fithess functions
PERSON - Parallel, Evolvable, and Revolutionary then uses the results fo create
Synthesis and Optimization Environment the child populq’rlon

M.Kordon



Objective Fitness. Functlon JPL
For Power Sub system

For this prototype the ob]ecz‘lve f tness functmn took
into account three factors:

Cost — Cost of solar cells and of battery watt-hours
Mass — Mass of solar cells and of battery watt-hours

Performance — Battery SOC should not drop below some
user-defined minimum.

Battery should charge; to someuser defined
value but not be rewarded for chargmg
to 100% (wastes energ}) “

* this requires a multt-ob]ecttve f tness functzon
M.Kordon
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Good Performance
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Objective Fitness Function — ymy
Weighted Sum Approach

Jla,) — Z Wi fi(@;)

The n objectives f, ..., f, are weighted by user-detined, positive
coefficients w,, ..., w, and added together to obtam a scalar
cost for each populatlon member.

SO0 1n our case:

Fitness = w,, (Cost, * amphr)2 v W (C ost * cells)z +
w, . (Mass, * amphr)? + w, (Mass * cells)” +
Winin(SOCyi — Socmmaumd) bk nshas
Wi (AvgSOC - FracSOC)?

' Algorithms and Operations, T. Back, ogel,
M.Kordon Z. Michalewicz, pg 26, IOP Publishing 2000



Objective Fltness Functlon JPL

Test Cases

Weighted Sum Approach

Deep Impact

Weighted Toward |

Cost & Mass ;  . :

Test Case 1

Weighted Toward
Performance

Test Case 2

MER

Weighted Toward
Cost & Mass

Weighted Toward |

M.Korden:



Deep Impact T st Cacer

S0

Mission Description

Launch
Dac, 2004
e
o
Spacecratt 7/
!/ Suny
Yy
%34 |
4
o
\
ey Earth at
Y Encounter
..
Impact <
July 2008

&g‘f

== Tempel 1 OQrbit (5.5 year Period)

we we e Spacecraft Transfer Orbit {from Earth to Tempel 1)

s Earth Orbit

M.Kordon

Deep Impact is a two-part
spacecraft (S/C). The larger “flyby

~ S/C carries the smaller “impactor”

S/C to Tempel 1 and releases it

into the comet’s path for a planned
collision on the sunlit side.

After the release of the impactor
the flyby S/C maneuvers within

- 500km to observe and record: the
* ‘impact; the ejécted material

. blasted from the crater, and the

- structure and composition of the

crater’s interior.

*from Deep Impact Web Site, JPL, Oct. 2003



Deep Impact Test Case _ymp.
Flyby Spacecraft Descrlptlon

Deep Impact flyby spacecraft is
about the size of a Ford Explorer, the
flyby spacecraft is three-axis
stabilized and uses a fixed solar array
and a small NiH, battery for its power
system.

The structure is aluminum and
aluminum honeycomb construction.
Blankets, surface radiators, finishes,
and heaters pass.lvely control the
temperature.

Solar
TR
Panel

The prdﬁhf‘s{ldﬂﬁéystem employs a
. simple blowdown hydrazine design
~that provides 190 m/s of delta V. The
flyby spacecraft mass is 650 kg with a
total mass of 1020 kg.

: *from Deep Impact Web Site, JPL, Oct. 2003

Deep Impact Flyby Spacecraft
M.Kordon



Deep Impact Test Case JPL

Test Case Description

Trajectory — Cruise. Start from Earth to 1.5 AU in 8.3 months

Activity Plan — Constant load of 400 Watts Wlth solar panels
tilted 23 deg. off normal -

Simulated 5 traj ectory-c@or;rection ‘maneuvers by
turning the solar array edge-on to the Sun for
about 3 2 minutes every 5 0 days.

Parameters - Population size of 200 for 500 generations

M.Kefaon L



Deep Impact 1 @St Case
TeSt 1 _ Welghted Sum

JPL
pproach

Weighted toward (prioritizing) cost and mass

Solar Array & Battery Capacity:

Cells/string in segment 1: 22
Strings/segment in segment 1: 44
Cells/string in segment 2: 16
Strings/segment in segment 2: 122
Battery capacity in amp-hr: 16.0

Optimization Intervals:

Cells/string in segment 1: [1, 50]

Strings/segment in segment 1: [1, 100]

Cells/string in segment 2: [1,40]
Strings/segment in segment 2: [1,200]
Battery capacity in amp-hr: [8.0, 40.0]

Cost & Mass Values:

°

K @ Pt 2

Solar cell cost: $0.832k
Solar cell mass: 0.01 kg/cell

| v"‘Battery cost: $15.9k/amp-hr
3 ?'Battery mass O 01667 kg/watt-hr

Wenghtmgs

é;SG]aI’ array cost:" 1.0

Solar array mass: 1.0

o ?.jattery oS 10
‘Batter} mass: 1.0
- Battery SOC min.: 1000.0

Battery avg. SOC: 1000.0

M.Kordon @ -



Deep Impact Test ~ase JPL

Test 1 — Weighted Sum Results

s ih afy

Optimum each Generation

: men Exitery Capacify

: , so— '5?ﬁn95259*3m»':m 1
; im SiingsiSeaments
: f S CelisiSng 1

; . Ceiiifﬁhﬁwz

100 - -

FParameter Yalues

w300 o 800 et SO0C G o
Generation

)

! ]
g 100 200

Refresh | Close

Weighted toward cost and mass
M.Kordon



Deep Impact Test Case JPL

Test 2 — Weighted Sum Results

L g

Parameter Values

100~

o
<
!

Optimum each Generation

C ) e Bty Capaciiy
e SHinGsSeament 1

e ShirgsiEement s
4 3

s Callsishina Y

L Celsishing

Lo ¢
% T TE B .

1
a 140 200

1 i i;’*‘"" M 4;.};; i i N R e
Generation :

Refresh ; Clase g

Weighted toward performance
M.Kordon |
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Mars Exploration Rover (MER) oy
ission Description

The Mars Exploration Rover
mission consists of two separate
launches with the two rovers,
MER-A “Spirit” and MER-B
“Opportunity”, being delivered in
a landing craft to separate sites,
Gusev Crater and Meridiani
Planum, on Mars in January 2004.

Cusey Crater Sae (YOS5 i;«: m
MERA: Opeens of wirdowsed

The primary mission goal is to
search for and characterize a wide
ra‘nge*of rocks and soils that hold
iclues to past water activity on

po el

ﬁ A,_goal for the rover is to
drive up to 40 meters (about 44
yards) in a smgle day, for a total
Of up to one kllometer

’ *from MER Web Site, JPL, Oct. 2003




MER Test C’gs@
Rover Descrip}tign

MER is 1.5m (4.91t) high by 2.3m
(7.5ft) wide by 1.6m (5.2ft) long. Two
Li-Ion rechargeable batteries provide
energy for the rover at night. Over
time, these batteries will degrade.

SFPL

The main source of power for each
rover comes from a multi-panel solar
array. When fully illuminated, the
rover solar arrays generate about 140
watts of power for up to four hours
per sol {a Martian day). By the end of
the 90-sol mission, the capability of
o the}sofiqr@armys to generate power will
~likely be redueed to about 50 watts of
power due to anticipated dust
coverage on the solar arrays.

Mars Exploration Rover

*from MER Web Site, JPL, Oct. 2003

M.Kordon



MER Test Casg - JPL
Test Case Descmptl(m

Trajectory — Mars Surface. 14.95 South Latitude for 90 sol,
simulating MER-A at Gusev Crater

Activity Plan — Constant load of 50 Watts durmg the 6 hour day
and 8§ watts at night. o

Evolution |
Parameters - Population size of 200 for 500 generations

MKQ]‘dQn | A



Weighted Sum Approach -  jo¢

Disadvantages

» Ideal Approach

w

0.1 0.5 0.8

0.1 0.5 0.8 w
Disadvantages ey ]deally |
*  Must call single optimization e '*'-Generate all solut10n In one pass
multiple times * Evenly distribute the solutions

Weighting may not be evenly

distributed E

Since GA is stochastic it maynot - . from both the parent and child

preserve the best solution
M.Kordon

first then map to weightings
. Always preserve the best solution

pOpUl&thl’lS *adapted from Multi-Objective Optimization u using

Evolutionary Algorithms, K. Deb, pg 173, Wiley 2001



Niched-ElitistAppmaCh JPL

1. Use crossover and mutation to form 4. Create new parents by sélecting the top ranked
a child population from the parent solutions from each category until pop. =n
1 1 ; 1
+ g = -
n r n

2. Combine the parent and child 3. Rank the combined population from best to

populations worst in each subpopulation category
1
. :
n+y
1 ~Note: Should also have combination
' - categories such-as Mass/Cost and

' M.Kordon Cost/P el”f OI’mance



Niched — Elitist Hybrid Solutions Pt

rybrid App"ﬂ’?fh E  Niched-Elitist Solutions

o Best Cost

°  Best Mass

e  Best Performance

» . Best Cost/Mass

o Best Cost/Performance
»  Best Mass/Performance
+  Best
Cost/Mass/Performance

performance

Hybrid Procedure SE TN

1. Get the best ‘single’ solutlons Qf hybrld (e g Best Cost)

2. Find the angle midway between- smgle solutions and project a
line through solution space

3. Get the solution closest to the line then closest to origin

M.Kordon



Known — Use known optimail,‘t‘és‘i case to test our results
Optimal

Non-Linear — Costs are currently linear B
Cost Model

Lifecycle — Cost 1s only for hardware""kéompdﬁ'ents. May want

Cost to include cost for design, integration, test and
workforce lifecycle costs.

Structural — Mass is only for hardware compbhents. May want

Mass to include mass of mountirig hardware as well.

M.Kordon



Future Work (Q m) o JPL

More — Include more design parameters such as
Parameters  battery technology

Risk — Incorporate risk in the objective functions

More

Subsystems — Apply Evolutlonarv computmg to addltlonal
subsystems

Integrated

Subsystems — Integrate subsystems t()gether for system solutions.

M.Kordon
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Deep Impact Test Case JPL
Test 1 — Weighted Sum Approach

Weighted toward (prioritizing) cost and mass

Solar Array & Battery Capacity: Cost & Mass Values:
o Cells/string in segment 1: 22 . » Solar cell cost: $0.832k
o Strings/segment in segment 1: 44 b :Solar cell mass: 0.01 kg/cell
o Cells/string in segment 2: 16 » Battery cost: $15.9k/amp-hr

Optimization Intervals:

Strings/segment in segment 2: 122 .

Battery capacity in amp-hr: 16.0

Cells/string in segment 1: [1, 50] T

Strings/segment in segment 1: [1, 100]

Cells/string in segment 2: [1,40] .

Strings/segment in segment 2: [1,200]

%

Battery capacity in amp-hr: [8.0, 40.0]

M.Kordon

Battery mass: 0.01667 kg/watt-hr

Weightmgs
‘ Selar array ‘cost: 1.0

Solar array mass: ] O

;,Battery cost ] 0
Ba.ttery mass: 1.0
-+ Battery SOC min.: 1000.0

Battery avg. SOC: 1000.0



Deep Impact Test Case JPL
Test 1 — Weighted Sum Results

. aft

Optimum each Generation

4 e S ey Capacity
B -m EhirasiSeamand 1

i weens SHingsSeament2

100 - | =

Callsiating
CeilsiShing 2

Parameter Yalues

I 'v'.;:‘, p £ o
200 Pt
aeneration

Refresh Cose

Weighted toward cost and mass
M.Kordon




Deep Impact Test Case o
Test 2 — Weighted Sum Approach

Solar Array & Battery Capacity:

Optimization Intervals:

Weighted toward ,pel?fo»r‘mah}ée

Cells/string in segment 1: 22
Strings/segment in segment 1: 44
Cells/string in segment 2: 16
Strings/segment in segment 2: 122
Battery capacity in amp-hr: 16.0

Cells/string in segment 1: [1, 50]
Strings/segment in segment 1: [1, 100]
Cells/string in segment 2: [1,40]
Strings/segment in segment 2: [1,200]

Battery capacity in amp-hr: [8.0,40.0]

M.Kordon: -

1
® ;

Cost & Mass Values:

Solar cell cost: $0.832k
Solar cell mass: 0.01 kg/cell
Battery cost: $15.9k/amp-hr

| Battery mass: 0.01667 kg/watt-hr

Welghtlngs |
. Selar array cost:0.000001

Solar array mass: O OOOOOI

:T;Battery cost 0 I
Batterv mass: 0.1
- Battery SOC min.: 1000000.0

Battery avg. SOC: 1000000.0



Deep Impact TésthaS;e  JPL
Test 2 — Weighted Sum Results

Xogfrooo

Optimum each Generation

: : k §-~ Baerv Capiacity
: |- SRS egment |
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Generation

Refresh Close ‘

Weighted toward performance
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MER Test C&S@ ' JPL

T'est 3 — Weighted Sum Approach

Weighted l‘owam’ cast and mass

Solar Array & Battery Capacity: Cost & Mass Values:
* Cells/string in all segments: 16 * Solar cell cost: $0.832k
* Strings/segment in segment 1: 4 * Solar cell mass: 0.01 kg/cell
* Strings/segment in segment 2 & 3: 5 * Battery cost: $19.3k/amp-hr
« Strings/segment in segment 5 & 6: 5 * Battery mass: 0.01667 kg/watt-hr

* Battery capacity in amp-hr: 8.0

Optimization Intervals: Weightings:

* Cells/string in all segments: [1, 40] .

* Strings/segment in all segments: [1, 20]
* Battery capacity in amp-hr: [4.0, 16.0]. %0 .

Jv'
1@

Solar-array cost: 1.0

Solar array mass: 1.0

* {Battery cost: 1.0
Batery mass: 1.0
- Battery SOC min.: 1000.0

Battery avg. SOC: 1000.0

M. Kordon: " .-



MER Test Case .
Test 3 — Weighted Sum Results

]
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M.Kordon |




MER Test Case o
Test 4 — Weighted Sum Approach

Weighted towardperformance

Solar Array & Battery Capacity: Cost & Mass Values:
* Cells/string in all segments: 16 * Solar cell cost: $0.832k
* Strings/segment in segment 1: 4 - Solar cell mass: 0.01 kg/cell
 Strings/segment in segment 2 & 3: 5 * Battery cost: $19.3k/amp-hr
* Strings/segment in segment 5 & 6: 5  Battery mass: 0.01667 kg/watt-hr

* Battery capacity in amp-hr: 8.0

Optimization Intervals: - Weightings:
* Cells/string in all segments: [1,40] = <" Solat-array cost: 0.000001

* Strings/segment in all segments: [1, 20] Solar array mass: 0.000001

* Battery capacity in amp-hr: [4.0, 16.0] == < atterycost()l |

i@

~» Battery mass: 0.1
- = Battery SOC min.: 1000000.0

* Battery avg. SOC: 1000000.0
M.Kordon ST S S T



MER Test Casg

S0

Test 4 Weighted Sum R@%ults
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