

DECREASING COSTS OF GROUND DATA PROCESSING SYSTEM DEVELOPMENT
USING A SOFTWARE PRODUCT LINE

Brian Chafin

Jet Propulsion Laboratory, 4800 Oak Grove, MS 171-264, Pasadena, CA, 91109, USA
brian.chafin@jpl.nasa.gov

ABSTRACT/RESUME

Ground Data Processing System providers face pressure
to produce high-quality, feature-rich systems for the
increasing number of small, low-cost space missions.
They also face competition from other providers who
have begun marketing their services outside their parent
organization. Many processing system providers must
substantially reduce their costs in order to stay in
business. Creating a software product line, a reusable
software system infrastructure and methods detailing
how to use that infrastructure, is one way of reducing
costs. In this paper, I describe software product lines
and why a Ground Data Processing System should use
one. I also describe how to develop a software product
line, using examples from an imaginary Ground Data
Processing System.

Brian Chafin is a senior systems engineer in the
Instrument Software Section at the Jet Propulsion
Laboratory in Pasadena, California. He has a Masters
Degree in Systems Architecture and Engineering from
the University of Southern California and a Bachelors
Degree in Engineering and Applied Science from the
California Institute of Technology.

1. INTRODUCTION

Few scientific space missions can secure the multi-
billion dollar budgets enjoyed by the flagship missions
of the past. Both deep space and Earth science missions
must produce valuable scientific results with many
fewer dollars (or euros). Past missions could afford to
spend tens of millions of dollars developing data
processing systems. Future missions do not have that
luxury.

Future missions must develop their data processing
systems more cheaply than in the past. Systems that are
built once and used in mission after mission are the
cheapest option. The single system approach is
certainly viable for organizations that only process one
or two types of data. A single system does not provide
the flexibility needed by organizations which aim to
process heterogeneous datasets from a variety of
instruments, however.

These organizations need to develop a family of
systems. Systems in this family share many
characteristics but diverge where they need to
accommodate varying data types or processing
algorithms. A software product line is one example of
such a family of systems.

A software product line is a set of software-intensive
systems that share a common, managed set of features
that satisfy the specific needs of a particular market
segment or mission and that are developed from a
common set of core assets in a prescribed way.
(Clements, 2002) A processing system development
organization that uses a software product line is similar
to a car manufacturer that uses a common chassis,
common production line, and common procedures to
make a variety of automobiles. Using this approach, a
development team can optimise their productivity by
developing the features common to a set of systems
only once, while still retaining the flexibility needed to
address system-specific issues. The common features,
the core assets of the software product line, include the
following:
• A set of requirements that apply to all systems in

the product line,
• A reusable system architecture,

A library of software components, many of• which

•

•
ue components into the common

those artefacts. I illustrate this process with examples

are used in every system in the product line,
Test suites to verify and validate the common
framework, and
An implementation methodology that defines how
to develop the system, including how to integrate
system-uniq
framework.

The software product line approach is one method of
developing cost-effective data processing systems.
Some organizations would undoubtedly benefit from
adopting this approach. Others may well benefit more
from a different approach. In this paper, I provide
information to help managers and system architects for
data processing system providers evaluate the software
product line approach. I analyse its benefits and
drawbacks. I also provide an overview of all of the key
artefacts and a much simplified process for developing

drawn from a fictitious ground data processing software
product line.

2. BENEFITS AND DRAWBACKS FOR DATA

PROCESSING SYSTEMS

The greatest drawback to adopting a software product
line approach is that an organization does not realize the
benefits of using it immediately. The initial
development of the common assets of a software
product line is a substantial investment in infrastructure.
An organization only achieves substantial cost savings
when it uses that infrastructure to develop a data
processing system for a new mission. Even then, more
than one system must be developed to defray the
upfront investment. Developers must use a single
software component built for reuse three times before an
organization sees any cost savings from that reuse.
(Tracz, 1995) A similar heuristic applies to software
product lines. An organization must build three product
line systems before realizing any overall benefits.
(Krueger, 2005) Some organizations cannot afford to
make this upfront investment or wait such a long time
for a return on that investment.

If the organization is willing to make the needed
investment, the benefits can be substantial. Hewlett-
Packard replaced their process of developing firmware
for each of their printers independently with a software
product line approach. Hewlett-Packard reduced its
development time by a factor of three, its overall team
size by a factor of four, and its defect density by a factor
of twenty-five. (Toft, 2004)

Organizations can achieve benefits of this magnitude
because a system is already substantially complete when
the development team starts to work on it. Many of the
requirements are identified and approved. The
interfaces are defined. The infrastructure is built. Much
of the testing is complete. Developers need only to
work on the unique, data-specific aspects of the system.
The need to generate and test less code means that fewer
developers can build the system in less time than it
would take to do so from scratch. Developer salary and
benefits is usually the largest portion of total system
development cost. Reducing the number of hours spent
developing the system (in Hewlett-Packard’s case, by a
factor of twelve) can substantially reduce that total cost.

Adopting a software product line approach affects the
risks involved in developing a new system. Applying
the top-down method of creating a product line
described in this paper means that the organization has
completed much of its development work before even
beginning to develop a real system. The development
team may learn that the infrastructure is flawed, that
they cannot create a real system as easily and as cheaply
as predicted. Using an experienced product line

architect, one who has worked in the organization for
some time and knows how its data processing systems
work, substantially reduces this risk. The organization
can reduce this risk even more by developing the
components of a real system at the same time as the
components of the infrastructure. Concurrent
development allows the development teams to test the
product line infrastructure and methods as they are
being built.

Adopting this approach does reduce some risks and their
associated costs. An organization must set aside large
reserves to accommodate the risks arising from
inaccurate schedule prediction and from undetected
flaws in the software. Once an organization has started
on its third system, it has already built two similar
systems. This experience allows the organization to
increase the accuracy of its schedule predictions,
reducing the concomitant risk. Most probably, the
organization’s customers have also used at least one of
those systems operationally. This use would have
revealed most of the major bugs in the common
framework. Having a relatively bug-free product
reduces rework costs during development and
maintenance costs during operations.

Many organizations specializing in ground data
processing can easily reach the three system threshold.
Universities or government facilities build most space-
based instruments. These institutions usually build a
family of similar instruments for multiple platforms or
build a variety of unique instruments. This hardware
pipeline provides ample opportunity for the same
institutions to develop systems to process the data that
hardware produces. These institutions generally have
sufficient resources to fund the initial infrastructure
development, assuming that future bids to build
instruments would reflect the downstream saving in
labor cost and reserves.

Some organizations that have provided ground data
processing systems to their parent institutions in the past
may wish to develop new sources of revenue by selling
their services to other institutions. Doing so places
these organizations in direct competition with other
organizations, even commercial ones, doing the same
thing. To be successful, these organizations need to
provide a high-quality product at a competitive price. If
they can afford to be patient, afford to build the
necessary infrastructure before seeing any income, a
software produce line can give them a competitive edge.

3. DEVELOPING A SOFTWARE PRODUCT

LINE - OVERVIEW

Before an organization can build its first system, it must
develop the product line infrastructure on which all
future systems would be based. First, the organization

must assign the personnel who do the work. The most
important person is the product line architect. The
product line architect develops the requirements,
produces the design, and oversees the developers and
test engineers who instantiate her vision. Having a
single person oversee the whole development lifecycle
allows the organization to produce a product consistent
through all levels of design and implementation. The
architect must be an excellent systems engineer with
extensive experience with both data processing systems
and the organization which develops them. Software
developers, test engineers, organization management,
and potential customers also participate at various
stages in the process.

Once the architect is identified, she can begin
developing the product line infrastructure. This process
consists of six steps:
• Describe the product line, including identification

of the common features that define this family of
systems

• Identify the requirements common to all systems
• Create the product line architecture
• Document the implementation methodology

ent library

 example based on the
aginary FUSE (Fast Universal Science Environment)

m business goal of marketing its data
rocessing services to customers outside of its parent

v

ely the amount of
formation that fits on one or two slide in a

AA (National Oceanic
nd Atmospheric Administration) weather data, for

on begins to market its prowess. She

all eeded to specify the new class of

•

•
ng pipeline.

 in the processing pipeline in a single

• platform.

Ma
pro
sim
are

ch

• Build the compon
• Build test suites

The rest of this paper provides an introductory guide to
this process. Each section briefly describes how to
perform one of the six steps. An
im
product line illustrates each step.

The mythical organization developing FUSE supports a
variety of Earth orbiting instruments built by the
university to which it belongs. This organization prides
itself on fast turn-around of data products. It also has a
medium-ter
p
uni ersity.

4. DESCRIBING THE PRODUCT LINE

To develop a software product line, the product line
architect must first bound the scope of the systems to be
developed. The architect develops a high-level list of
the features necessary to include in each of the systems.
This list serves as a guide for developing more detailed
product line descriptions and common requirements
later. This list is concise, approximat
in
presentation to a potential customer.

The features listed must also reflect the culture of the
organization implementing the product line. They must

be compatible with the development and operations
methods of that organization, the needs of its customers,
and the types of data the organization plans to process.
A set of systems to process NO
a
example, differ from a set of systems to process data
from deep space missions.

To develop her vision of the FUSE product line, the
FUSE architect examines systems produced by that
organization in the past. She identifies some common
capabilities in those systems that have worked well for
past missions. She also identifies new capabilities that
she foresees would be valuable in the future, when her
organizati
develops a description of a FUSE system that includes

of the features n
systems:

The system receives raw science telemetry from an
outside source.

• The system processes the raw telemetry into
scientifically interesting values.
The system performs all data processing in a non-
interactive processi

• The processing pipeline contains multiple data
processing segments, each of which applies a
distinct algorithm to the data produced by the
previous segment.

• Data may follow multiple paths through the
processing pipeline.

• The system stores intermediate and end-product
data produced
database.

• Customers may access end-product data within one
hour of the system receiving the raw telemetry.

• Customers construct custom products from data in
the database.
The system runs on a Linux

• The operations team performs scheduled system
maintenance rapidly, with little impact to
operations.

• The system includes a backup processing pipeline
that takes over processing automatically if the
primary system goes down.

naging the variations between systems in a software
duct line is as important as managing their
ilarities. The list above describes how the systems
the same; the architect must also describe how they

differ. The list below describes the variations the
ar itect allows between these systems.

• The provider of the raw science telemetry may
deliver the data to the system using any of a number
of methods. The two methods initially supported
are secure copy over the Internet and delivery on
DVD (Digital Versatile Disk).

• The complexity and number of scientific results
produced by a system requires that the number of
processing segments vary.
The algorithms encoded in the processing segments
vary between segments. Similar systems may use
some of the same segm

•
ents.

pply to
stem-unique components as well. The systems

s
yea
The opers are used to working with vague, high-

who

outl
requ ents follow this

orga even categories of
u

•

• how
often a system is allowed to fail.

The
cl

st
n

a
v
d

ll

• ce - Interfaces with data product customers
shall use a web-based GUI (Graphical User

• shall process 99 percent of

r.

• The schemata of the data storage databases vary
between systems.

• The types of metadata available for inclusion in
data products vary between systems.

• Customers of end-product data may request the
system deliver the data to them using any of a
number of methods. The two methods initially
supported are secure copy over the Internet and
deliver on DVD.

. IDENTIFYING COMMON REQUIREMENTS 5

The product line description is the foundation on which
the architect builds the product line requirements.
These requirements apply to every system in the product
line. A system meets most of the requirements by using
the product line infrastructure as specified by the
architect. Some of the requirements, however, a
sy
engineer for a single system develops the requirement
unique to that system when its development begins.

The architect may not be able to derive all requirements
directly from the product line description. For example,
the FUSE system description does not specify how data
processing segments communicate with one another. In
these cases, the architect uses her domain-specific
experience to develop appropriate requirements.

The culture of the organization defines much of the
process of requirement development. Few
organizations treat requirements in exactly the same
way. Some organizations prefer to define a small
number of non-specific requirements in order to provide
an experienced team of developers leeway to solve
problems creatively. Other organizations produce a
large number of very specific requirements in order to
ensure that the product meets their needs exactly.

Mo t of the developers in the FUSE organization have

rs of experience developing data processing systems.
se devel

level requirements. Very experience systems engineers
 keep the developers from doing anything too

andish compensate for the absence of very specific
irements. The FUSE requirem

organizational pattern. They also follow the
nizational pattern of specifying s

req irements:
Functional - Functional requirements identify any
capability performed by every system in the product
line.

• Interface - Interface requirements identify all of the
product line interfaces. This list includes interfaces
between system components as well as between the
system and the outside world.
Reliability - Reliability requirements specify

• Performance - Performance requirements specify
how a system uses its resources. The most common
performance requirements set limits on processing
speed.

• Platform - Platform requirements specify the
hardware on which a system must operate.

• Maintainability - Maintainability requirements
specify how easy the system is to maintain.

• Coding standards - Coding standard provide
specific rules by which developers must abide.

 FUSE architect develops a set of requirements that
ude ones in in each of these categories. She then seeks

comment and consent from the stakeholders in the
em. For FUSE, these stakeholders include tsy he

ma ager of the organization, senior technical staff, and
potential customer from an instrument being
eloped by the university. The architect de uses their

fee back to develop the final set of requirements. The
owing list shows examples drawnfo from that final set.

• Functional - A system shall perform all data
processing autonomously.
Interfa

Interface).
Reliability - A system
all orbits without a component failure.

• Performance - A system shall perform all data
processing on an orbit of data within one hour of
receiving the raw telemetry for that orbit.

• Platform - A system shall operate on any platform
with a Linux operating system.

• Maintainability - An upgrade to system software
shall be performed in less than one hou

• Coding standards - A component shall be written in
C++.

6. CREATE THE PRODUCT LINE
ARCHITECTURE

After the stakeholders have accepted the requirements,
the architect begins designing the product line
architecture. A product line architecture is a complex

ign. The architectural style is one aspect of that
ign. Since many systems will be built from this
itecture, the architect must choose an architectural

des
des
arch

dev

The

eta t the product line level and which

•

ces.

At
com
incl
com
arch five things:

. The architect determines how a

 respond to a message received from another

ent

mponents place messages on these buses

’s reply.

spond s r s
compone ts.

Fig. 1 illustrates this architecture. The top blue bar
represents the status message bus. The bottom blue bar
represents the database message bus. Between the two
bars lie the system c luding the special
communication bus omponents. Any
particular system may include any number of
compone ponent con f the
message buses e stan . Only
the con aries between components.
The da nnects
only to e

terface as the other components to do so.

style that supports easy integration of new capabilities.
Styles which use the principal of component-based

elopment usually have this flexibility.

 architect has some leeway in determining what
ils she specifies ad

ones she leaves to developers of particular systems. The
architect must specify the details of the product line
infrastructure at both the system level and the
component level. At the system level, she specifies at
least two things:
• How components communicate. The architect

designs how components connect with the system
and communicate between themselves. This design
includes a specification of the generic interface that
each component must use.
How the system interacts with the outside world.
The architect designs the interfaces between the
system and any external entity. Organizational
culture determines the detail to which she specifies
these interfa

a component level, the architect first identifies the
ponents which are common to all systems or are
uded in enough systems to warrant inclusion in the
ponent library. For each of these components, the
itect specifies

• What each component does. The architect
describes all of the component’s required
capabilities.

• What can vary within each component and how that
variability is handled. A component may not
perform a particular task exactly the same way in
every system
component is likely to vary and stipulates how the
component is built to accommodate these
variations.

• How each component implements the generic
component interface. The architect expands on the
generic interface, providing a description of the
information that the component provides other
components and that it receives from other
components.

• How each component implements an external
interface, if the component has such an interface.

The architect produces detailed interface
specifications.

• Restrictions on each component. The architect
enumerates all constraints she levies on a
component.

The FUSE architect decides to use an event-driven,
implicit invocation architectural style. Components
communicate by passing messages to one another. A
component may produce a message when an event
occurs within the component that other components
should know about. A component may also produce a

essage tom
component. When a component receives a message, it
determines whether it should act on the message or
ignore it. A component knows what to do when it
receives certain types of messages and ignores messages
of any other type. For example, a processing segment
an start processing a piece of data when the segmc

before it in the pipeline announces that it has completed
its processing of that data. The same segment would
ignore messages from the segment two places before it.

Each component in a system is attached to two message

uses. The cob
and read other messages from them. Each of the
messages consists of the type of message, the id of the
generating component, the priority of the message, and
the message itself, which is a C++ object. Messages on
the database communication bus also include the id of
the component to which the message should be
delivered.

The first of these two buses connects the database with
each of the other components. Messages passing on this
bus may be quite large. For that reason, the bus filters
the message. Only the component that generated a
equest to the database receives the databaser

The second bus connects all of the non-database
components. The messages on this bus are primarily
status messages. Components post their status when it
changes or re

n
 to statu equest from other

omponents, exc
and database c

nts. Each com nects to both o
dard interface, using the sam

tent of the messages v
tabase component (depicted in yellow) co
 the database message bus, but it uses the sam

in

Figure 1. FUSE architecture schematic

In e FUSE architecture, components run continuously.

h component determines what tasks it should
orm based on the messages it receives. If it has
tified more tasks than it can perform

ultaneously, it places the waiting tasks in a queue.

 FUSE architect decides that the FUSE component
ary should include the following components:
Database - This component stores all of the
intermediate and end-product data produced by the
system. The database schema is highly system-
dependent. The database component allows a
system developer to specify the schema fully. The
database only responds to messages, it does not
generate any on its own. The database accepts two
types of messages: SQL searches, data requests,

th
Eac
perf
iden
sim

The
libr
•

•

us. A system operator

•

•

•
a

produced by a system. It allows a customer to
ires and to

uct from that data. The
stomer

n
e

es
itor

request
’s

ent
ts.

 the library does not implement a

and status queries. It responds to these messages by
providing the search results, the requested data, and
its current status, respectively.
Communications bus - This component relays
messages between components. This component
comes in two varieties. The first type, used as the
status communications bus, sends all messages to
all components. The second type, used as the
database communications bus, only sends messages
to the component to which the sender directs them.
The component developer builds both variants into
the component. A system developer uses a
selection parameter to identify which variant to
build for his system. A bus component must also be
able to accommodate a varying number of
components attached to it. The component is built
to accept any number of components, as long as
they are registered with the b
registers all of the components connected to that
bus when the system is started.

Telemetry ingestor - This component receives
telemetry sent to the system and stores it in the
database. This component has two major variants,
one which receives data via the Internet using SFTP
(Secure File Transfer Protocol) and one which reads
data from a DVD. The component developer
includes both sets of functionality in the
component, making each variant selectable at build
time by a component parameter. Minor variants,
such as the list of metadata stored with the file and
file naming conventions, are stored as configuration
files for each type of data. The component reads
these configuration files at run time. When the
component determines that new data has arrived at
the Internet SFTP site or the DVD drive, it sends
that data and its metadata to the database, storing
one record in each message. It also provides its
current status when queried.
System monitor - This component monitors other
components. Its job is to query other components
for their status. If a component fails or crashes, or
has been processing a single orbit for much longer
than expected, this component alerts the system
operator by e-mail. Other components register
themselves with this component at run-time. Minor
variants, such as the e-mail address of the operator,
are specified in configuration files.
Product distribution - This component provides the
primary interface with customers of the dat

search the database for the data he des
produce a data prod
component then sends the product to the cu
over the Internet or writes it to a DVD, at the
customer’s preference. The major variants for this
component are the interface to the user, the GUI,
and the potential product formats. Both of these
depend on the database schema, with some commo
features. They are generated at run-time, using th
schema as an input. This component communicat
only with the database and system mon
components. It sends search and data
messages to the former, receiving the database
responses. It responds to all status requests.

• Generic algorithm component - This compon
represents all of the system-unique componen
The code stored in
complete component. It implements all of the
functions used by every component. For the FUSE
product line, these functions are the generic
component interface and the task queuing system.

Database

Component
1

Component
n…

Component
2

Message bus
Non-database component

Message traffic

7.
DOLOGY

ft
arch
also
sho
thos
dev
Thi
that

u

Mu
this
arch
wha
sup
•

the

ess

 A component construction process. The architect

-line, the architect assumes a less active
le in the development process. A component

development team takes the lead in creating the
mandatory components. The architect oversees that

nsure that their

requ
any
syst

ta
s

com
s

opti
com
wor

9.
The
test
hav h system. A team of test

g
con
the l
with
nsu e test infrastructure works with the product

ffective when computers do most of the work.
Once the test harness is set up, the test engineers

DOCUMENT IMPLEMENTATION
METHO

So ware product lines are more than a reusable
itecture and a library of reusable components. They
 include a set of processes and other artefacts that
w how a systems engineer uses that architecture and
e components to build a system, even how a
eloper designs and implements a new component.
s documentation is the last piece of a product line
 truly allows a development team that uses it to

foc s on the unique aspects of their new system.

ch of the required documentation already exists at
 point in the process. The requirements and
itecture are complete. The architect has defined
t to build, but not how to build it. She must now

ply the following:
A software development process. This document
specifies the procedures developers follow to
design, build, and test software. The development
organization probably already has one. If not,
architect must create it or, at least, document the
organization’s common practices. Having a proc
documented allows developers to move from
system to system without spending time learning
new processes and allows systems engineers to
concentrate on designing the system, not the
process.

• A system construction process. The architect
defines the process through which a systems
engineer designs and builds a system using the
product line. This process enumerates the steps the
systems engineer must perform and the decisions he
must make. The procedures document how a
component is integrated into the system, how to
customize the data repository, and how to
customize the external interfaces.

•
defines the process through which a developer
creates a new component. For the FUSE system,
the architect details how a developer turns a generic
algorithm component into a new, complete
component. The FUSE procedures document how
to create a component-specific interface from the
generic component interface, how to integrate
algorithmic code into the component infrastructure,
how to accommodate variability within the
component, and how to use the queuing facility.

8. BUILDING THE COMPONENT LIBRARY

Once she has completed the design and documentation
f the producto

ro

task, working with the developers to e
components meet her specifications. The developers
work with the architect to generate detailed
requirements for each component and verify that the
developers’ designs are compatible with the product-
line design. The developers also work with the test
engineers, who are simultaneously developing a testing
infrastructure, to ensure that the components fit in that
infrastructure.

The architect and developers should assemble a

ototpr ype system as early in the process as possible, to
test the product line design. The components that are

ired for a prototype are developed first, along with
 other important components needed to show that the
em is working. For the FUSE architecture, the
base and communication bus coda mponents are

ab olutely required for a prototype. Two other
ponents are necessary to show that the message

sing is working copa rrectly. The architect decides that
the telemetry ingestor, with only the DVD-reading

on implemented, and the system monitor
ponents would adequately show that the system
ks.

BUILDING THE TEST SUITES

 product line infrastructure includes a standard set of
s and a test infrastructure, so that these items do not
e to be created anew for eac

en ineers develops the testing infrastructure
currently with the development team implementing
ibrary components. The testing team works closely
 both the development team and the architect to
re that the

line infrastructure. The testing infrastructure consists of
four items:
• A component test harness. The component test

harness is a software construct into which a test
engineer can insert a single component. The
harness provides test input to the component and
records the component’s responses.

• A system test harness. The system test harness
manages the inputs and records the outputs for an
entire system.

• Test automation tools. Testing is most efficient and
cost e

specify what component (or system) should be
tested and what set of inputs to use. The test
automation tools perform the tasks of setting up the
test environment, loading the correct inputs into the
test harness, and storing the recorded output. The
automation tools can also compare the results with
ones previously recorded.

• Test procedures. The test engineers document how
to set up a component or system test, how to run the
test using the automation tools, and how to read the
results.

Once the developers h
the test engineers be

ave completed some components,
gin to develop tests for those

euse of tests in a software product line approach is as

 output with the saved
sults. The systems engineers of the affected systems

repancies to identify their causes

ents, software components, tests, and processes

ects of all the systems in the
roduct line, an organization frees a system

enerate. This
duction in work allows the development team to build

educing the workforce and time needed to create a

face customers
with less money to spend on their systems and increased
competition from other providers. These organizations
must reduce their system development costs to remain
viable. For organizations that can afford the upfront
costs of developing the required infrastructure, creating

a family of systems using a software product line
approach can achieve that goal.

11. REFERENCES

Clements Paul and Northrop Linda, Software Product
Lines, Addison-Wesley, Reading, Mass., 2002.

Krueger Charles W, ‘Benefits of Software Product
Lines’,
http://softwareproductlines.com/benefits/benefits.html

components. The testers subject each component to
multiple tests, testing the designed variations of the
component as well as all of the robustness, performance,
and other requirements that apply to that component.
They develop similar tests for each of the prototype
systems produced by the development team. As
development teams generate new components and real
systems, the test team generates new tests to test them.
The test engineers save all of these tests and their results
in a test library, so that the tests themselves can be
reused.

R
important as reuse of the components themselves. In
traditional systems, test engineers must ensure that
changing one piece of code does not change the
behaviour of the whole system in unexpected ways. In
a software product line, the test engineers must ensure
that changing a common component does not cause
undesired changes in any system in the family. The test
engineers verify that no undesired changes have
occurred by running all of the system tests stored in the
test library and comparing their
re
must analyse any disc
and whether they are real problems.

10. CONCLUSION

A software product line infrastructure consists of
requirem
that an organization uses to build each new system. By
packaging the common asp
p
development team to address only the aspects unique to
that system. Consequently, the development team has
less code to create and fewer tests to g
re
a new system with fewer people and in less time that it
would take to it from scratch with a few reusable
components or even with a reusable architecture.

R
new system makes that new system cheaper to develop.
Many data processing system providers

,
BigLever Software, 2005.

Shaw Mary and Garlan David, Software Architecture :
Perspectives on an Emerging Discipline, Prentice-Hall,
Upper Saddle River, New Jersey, 1996.

Toft Peter, ‘The HP Owen Firmware Cooperative
A Software Product Line Success Story’,
http://softwareproductlines.com/successes/hp.html,
BigLever Software, 2004.

Tracz Will, Confessions of a Used Program Salesman,
Addison-Wesley, Reading, Mass., 1995.

	INTRODUCTION
	BENEFITS AND DRAWBACKS FOR DATA PROCESSING SYSTEMS
	DEVELOPING A SOFTWARE PRODUCT LINE - OVERVIEW
	DESCRIBING THE PRODUCT LINE
	IDENTIFYING COMMON REQUIREMENTS
	CREATE THE PRODUCT LINE ARCHITECTURE
	DOCUMENT IMPLEMENTATION METHODOLOGY
	BUILDING THE COMPONENT LIBRARY
	BUILDING THE TEST SUITES
	CONCLUSION
	REFERENCES

