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Outline
• This talk provides a review/overview of work by 

various groups on dual-frequency radar algorithms
• The presentation covers the following areas:

– The need for dual-frequency (DF) measurements
– History of the DF approach
– Recent DF algorithms
– Stochastic versus deterministic approaches
– Other algorithm differences and research issues



Why Do We Need Multi-Parameter Radar?
• Radar retrieval of rainfall is inherently ambiguous: a 

single reflectivity can correspond to multiple rainrates
– More generally multiple DSDs can yield the same 

reflectivity
• Situation further complicated by use of attenuating 

frequencies
– e.g, 5 km path, 2 mm/h: 0.5 dB 2-way PIA at 14 GHz
– Hitchfeld and Bordan (1954) developed single-

frequency profiling algorithm and showed need for 
additional information (constraint)

• From space we are limited in ways to gain additional 
parameters and reduce ambiguities
– Doppler measurements challenging due to platform 

motion, although feasible
– No differential reflectivity at nadir
⇒ Multiple frequencies can provide independent       

measurements



COARE and KWAJEX DSDs
• Horizontal axes are calculated Z14 and DFR
• Vertical axis is relative difference in % (KWAJEX-

COARE) in rain rate (left) and mean diameter (right)
• KWAJEX DSDs tended to have larger Dm

ΔDm

(figures courtesy Z. Haddad)



Dual-Frequency Algorithm History
• Use of dual-frequency radar has been contemplated 

since the 1950’s (Atlas, J. Meteorol., 1954)
• Eccles and Mueller, JAM (1971) proposed use of 

attenuating (X-band) and non-attenuating (S-band)
– Apparent reflectivity difference provides attenuation
– Attenuation can be converted to liquid water profile
– Assumes Rayleigh scattering at both frequencies

• Fujita (1983) developed an algorithm that uses 
nonlinear least-squares to fit a k-R and Z-R -based 
model to dual-frequency data

• Coupled differential or integral equations for DSD 
parameters used by Meneghini et al. (1992) and 
subsequent authors.

• Stochastic approaches used by L’Ecuyer and 
Stephens (2002), Haddad et al. (2005)



Deterministic Coupled Equation Approaches
• Rose and Chandrasekar (2005) classify algorithms

– Upward or downward recursion
– SRT/non-iterative (Meneghini et al. 1997) or non-

SRT/iterative (Mardiana et al. 2004)
• (SRT is the surface-reference path attenuation)

• Non-Rayleigh scattering at second frequency is 
exploited to retrieve DSD information
– Assume gamma size distribution 
– Use pre-computed table of dual-frequency reflectivity 

ratios versus mean size and altitude
– Measured reflectivity ratios are converted to “true”

reflectivity ratios using attenuation correction
– Initial attenuation is provided by SRT in non-iterative 

case or set to some nominal value in iterative case



Stochastic Approaches
• Assume DSD parameters are random variables or 

random processes
• MAP estimate is conditional mode: R,Do maximize 

conditional density(L’Ecuyer and Stephens 2002)
• MMSE estimate is conditional mean, using nonlinear 

filtering approach (Haddad 1996, 2005)
– Model bin-to-bin variation as a Markov random process
– Apply extended Kalman filter, particle filter, grid filter

PDF for rain rate,
given observations
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Conditional mode
Conditional mean



Additional Algorithm Differences/Issues
• Numerical implementation details

– may affect accuracy and possibly stability
– e.g., how do we handle discretization effects?

• Boundary conditions
– Use PIA from SRT as a constraint?
– If so, how is it best estimated?

• Microphysics
– DSD description

• How many parameters, and are they independent?
• More or less effective to use DSD samples database?
• How do we handle ambiguities?

– Frozen and mixed-phase regions
– Presence of cloud liquid water

• Algorithm output



Dual-Frequency Attenuation Over 250 m
• Attenuation within range bin computed directly from DSDs

• At large rain rates, attenuation is large, especially 35 GHz
• For light rain within-bin attenuations are same order as bin-to-

bin reflectivity variation due to noise
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(figures courtesy Z. Haddad)



PIA Estimation

(courtesy
R. Meneghini)

PIA obtained by 
moving forward 
differs from moving 
backward, likely due 
to wind gradients



Dual-Frequency Ambiguity
• Dual-frequency ratio versus Dm is double-valued

– Hence, DFR does not provide good estimate of Dm at 
low Dm 

– Z-14 can help with choice of Dm, although choice may 
be sensitive to noise

Courtesy R. Meneghini
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Dual-Frequency Ambiguity (II)
• Ambiguity can result in larger uncertainty in retrieved 

R at low R (example simulation from Hurricane 
Bonnie)

• Dual-frequency approach still better than single even 
at low rain rate due to use of both Z-14 and DFR
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rain rate (mm/hr)

(courtesy Z. Haddad)



Frozen and Mixed Phase Regions
• Algorithms already have capability to handle frozen 

and mixed phase regions
– e.g., Do versus Z ratio tables are computed as a function 

of altitude, with calculations performed for mixed phase 
or frozen particles above freezing level

• Problem is to correctly model radar properties of 
partially-frozen, inhomogeneous, irregular particles
– Numerical approaches for irregular particles exist
– Rigorous theory for randomly inhomogenous particles 

also exists - dense medium multiple scattering theory
• Application requires knowledge of internal particle 

structure, such as size distribution of water inclusions
– In lieu of such information, use simpler mixing formula; 

e.g., Meneghini & Liao (2000), Liao & Meneghini (2005)



Cloud Liquid Water
• Cloud liquid water in the form of small droplets 

attenuates but provides little backscatter
– 1 g/m3 yields attenuation of 0.1 dB/km at Ku-band and 

0.9 dB/km at Ka-band but reflectivity only 8 dBZ
• How can this additional attenuation be included in the 

retrieval algorithms?
– Use climatological or typical values in certain 

conditions (e.g., stratiform versus convective)
– Parameterize cloud liquid water in terms of 

precipitation
– Other?



Correlation of Cloud and Precipitation
• Cloud C and rain R liquid water in a given bin in model 

output are not correlated

• However, preliminary results indicate vertical behavior of 
C/R can be characterized to first order by one number

(courtesy Z. Haddad)



Summary
• Basic concepts of dual-frequency precipitation 

measurements were developed many years ago
• Recent algorithms use attenuating frequencies and 

non-Rayleigh scattering to estimate DSD parameters
• Algorithm differences include

– Viewpoint: stochastic or deterministic
– Numerical implementation
– Boundary conditions
– Outputs

• Microphysics, including vertical behavior of DSD, 
cloud/rain water relationship, and melting particle 
representation, are likely key areas for DPR algorithm 
improvements



Triple-Frequency Data
• Wakasa Bay, AMSR Validation, Jan 23, 2003
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