
Increasing Software Testability with Standard Access and Control Interfaces 

Allen P. Nikora, Raphael R. Some 
Jet Propulsion Laboratory, 

California Institute of Technology 
Pasadena, CA 9 1 109-8099 

anikora {rsome} @jpl.nasa.gov 

1. Introduction 
Testing is the most common method of determining 

whether a software system satisfies its requirements. Tradi- 
tionally, testing starts with the detailed examination of indi- 
vidual functions or methods, progresses through the integra- 
tion of functions or methods into subsystems, and ends with 
testing the functionality and behavior of the completely in- 
tegrated system. At each stage of testing, the amount of 
functionality and behavior of the artifact being tested is in- 
creasingly limited. One reason for this is that it becomes 
impossible to test all paths through the system within a rea- 
sonable amount of time. However, another reason for this 
progressive decrease of test coverage has to do with increas- 
ingly limited control of and visibility into the state of the 
artifact being tested. During unit test, it is rather simple to 
control the inputs of individual functions or methods or 
view their internal state - modem development environ- 
ments provide adequate facilities for doing so. However, 
these facilities do not scale up to the testing of partially or 
completely integrated systems. Control of and visibility 
into the system’s state is then limited to the input and output 
facilities provided by the software itself as well as the hard- 
ware on which the software is hosted during the test. These 
facilities are usually insufficient to precisely control the 
state of individual components or sets of components of the 
system; they are also inadequate to the task of displaying on 
demand the state of specific components. We describe an 
approach to improving the testability of complex software 
systems with software constructs modeled after the hard- 
ware JTAG bus, used to provide visibility and controllabil- 
ity in testing digital circuits. 

2. Controlling and Examining Software State 
In the following paragraphs we outline an approach to 

implementing a Software JTAG bus in which we directly 
map the hardware constructs of the JTAG specification 
[IEEEOl] to software equivalent structures. We then briefly 
explore some of the issues associated with this approach. It 
should be noted, however, that this is not the only imple- 

Yuval Tamir 
Concurrent Systems Laboratory 
Computer Science Department 

UCLA, Los Angeles, CA 90095- 1596 
tamir@cs.ucla.edu 

mentation approach that can be considered. A one-to-one 
mapping between the hardware and software versions is not 
necessarily optimal. However, what is necessary from any 
approach is that: 
1. All relevant application software modules must be organ- 

ized with their control structured as a localized state ma- 
chine rather than being distributed throughout the module. 
Our experience is that in many cases such a transforma- 
tion is relatively straightforward, as the control logic does 
not change, just its structural implementation. Note that 
not all modules need be organized in this way. Low-level 
modules with minimum control structure and minimum 
complexity may not require a software JTAG bus inter- 
face. Further, note that the level of abstraction encoded in 
the state machine is a design choice that must be made by 
the software engineer. The level of abstraction repre- 
sented by the software “state” can be at the bit level, the 
mode level, or anywhere in between, and is determined by 
the degree of visibility and control judged to be necessary 
or useful for test and validation of the system. The level 
of abstraction defines the granularity of state definition 
and the resulting visibility and control available through 
the software JTAG interface. Too high a level of granular- 
ity will not allow sufficient visibility and control for 
proper testing. Too low a level of granularity will result in 
excessive complexity and an explosion of state space. An 
appropriate level of granularity provides a practical level 
of testability, i.e., one allowing full testing of the system 
with sufficient visibility to localize errors to a region, but 
not necessarily to pinpoint the faulty instruction(s). 

2. Data must be organized as well-defined data structures. 
For the most part this is not an issue and will require 
minimal changes to the code 

3. The software JTAG interface must provide at least the 
following functions: state machine - read, write, halt, 
start; data - read, write; Module I/O (if present) read, 
write, halt, start; module /system synchronize; system - 
halt, start, synchronize. Beyond these basic functions, 
other built in test functions may be provided, such as 
shadowing of test variables. For initial software test and 

Copyright 2003 Chillarege Press Fast Abstract ISSRE 2003 

mailto:jpl.nasa.gov
mailto:tamir@cs.ucla.edu


validation, these built in tests are not required as this 
code may be incorporated into an extemal test program. 
They may, however, be useful in testing a deployed sys- 
tem either for regression purposes or for ongoing system 
test and validation activities. 

4. A standardized middleware and driver level segment of 
the software JTAG facility must be defined to provide 
overall system level control and visibility and to provide 
accessibility to extemal test programs and/or operator. 
Definition of this component is key to software JTAG 
operation, as it will define the mechanisms by which the 
software JTAG interacts with the OS as well as timing, 
synchronization mechanisms, and granularity. 
The diagram in Figure 1 below shows the way in which 

JTAG-like constructs might fit into a software system, in 
this case the controlling modules of a hypothetical fault pro- 
tection component for a space mission flight control soft- 
ware system. Within each module, the SW JTAG Inter- 
face corresponds to the JTAG Test Access Port and the Test 
Access Port Controller, the Test Data Structures corre- 
spond to JTAG test data registers, and the instructions are 
labeled on the arcs within each module. The state machine 
represents the module’s functionality and behavior. 

Fault Protection Controller 
I ,,n 1 Stsn 

I- 

, . 

Read / I \ SelectandRun 

Figure 1 - Software JTAG Conceptual Diagram 

Numerous issues must be addressed in developing these 
constructs, including: 

The additional space required by the constructs could sub- 
stantially increase the size of the flight system. Our ex- 
perience is that memory is always a scarce resource for 
space mission software; the constructs must be specified 
and implemented to minimize memory usage. 
The addition of constructs such as shadow variables may 
affect system performance. The time to write to a pri- 
mary variable will effectively be doubled. Guidelines for 
specifying shadow variables so as to minimize the impact 
on system performance must be developed. 
Scalability is a significant issue in terms of the amount of 
test data to be monitored. For large systems, the amount 
of test data to be monitored could easily be large enough 
to make these techniques unusable. It will be necessary to 
develop techniques to handle the sheer volume of test data 
that will be generated. 
Determining the appropriate level of abstraction at which 
to specify and implement the constructs will be a signifi- 
cant issue for large, complex systems. Assuming that 
these types of systems can be represented as collections of 
communicating finite state machines, guidelines regard- 
ing the level of abstraction appropriate for different levels 
of a hierarchy must be established. For example, guide- 
lines establishing the appropriate number of states to be 
specified and implemented in a module must be estab- 
lished, and the amount and type of test data appropriate to 
different types of modules must also be specified. 
The system must behave the same way during operation 
as during test. For example, timing must be considered 
for real-time systems - the ordering of events and the sat- 
isfaction of deadlines must be the same during test as dur- 
ing mission operations. This becomes especially impor- 
tant as we move from single-processor single-threaded 
systems to multi-processor, multi-threaded systems. 

Acknowledgments 
The work described in this paper was carried out by the 

Jet Propulsion Laboratory, Califomia Institute of Technol- 
ogy, under a contract with the National Aeronautics and 
Space Administration. 

References 
[IEEEOI] “IEEE Standard Test Access Port and Boundary- 

Scan Architecture”, IEEE Std 1149.1-2001, Insti- 
tute of Electrical and Electronic Engineers, 2001. 

Copyright 2003 Chillarege Press Fast Abstract ISSRE 2003 




