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Objectives: Gain a better quantitative understanding of the effects of
requirements changes on fault content of implemented system. Gain a
better understanding of the type of faults that are inserted into a software

system during its lifetime.

Use measurements to PREDICT faults, and so achieve better <

of Specification
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Structural Measurements

of Source Code

rplanning (e.g., time to allocate for
testing, identify fault prone modules)
guidance (¢.g., choose design that
will lead to fewer faults)
assessment (c.g.. know when
close to being done testing
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Goals

Develop a viable method of infusing the measurement and fault
modeling techniques developed during the first two years of this
task into software development environments at GSFC and JPL

¢ Collaborate with SATC and selected projects at GSFC
+ Continue and extend collaboration with projects at JPL

Develop training materials for software measurement for
software engineers/software assurance personnel

¢ Measurement background

+ Using DARWIN Network Appliance
+ QOrganizational interfaces

¢ Interpreting output
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- Provide quantitative information as a basis for
making decisions about software quality.

- Use easily obtained metrics to identify
software components that pose a risk 1o
software and system quality.

- Measurement framework can be used to
continue learning as products and processes
evolve.
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Measure structural evolution on collaborating development
efforts

+ Structural measurements for several JPL projects collected
+ Several GSFC projects have shown interest

Analyze failure data
+ ldentify faults associated with reported failures

- Relies on:
« All failures being recorded

« Failure reports specifying which versions of which
files implement changes responding to the reported
failure.

+ Count number of repaired faults according to token-count
technique reported in ISSRE’02 [Mun02]. (Fault count is
dependent variable)

Analyze relationships between number of faults repaired and
measured structural evolution during development
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- ldentify relationships between requirements change
requests and implemented quality/reliability

+ Measure structural characteristics of requirements
change requests (CRs).

¢ Track CR through implementation and test

+ Analyze failure reports to identify faults inserted
while implementing a CR

Develop training materials for software measurement
for software engineers/software assurance personnel

+ DARWIN user’s guide nearly complete
+ Measurement class materials being prepared
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Follow-on to previous 2-year effort, “Estimating and Controlling
Software Fault Content More Effectively”.

Investigated relationships between requirements risk and reliability.

Installed improved version of structural and fault measurement
framework on JPL development efforts

¢ Participating efforts
- Mission Data System (MDS)
- Mars Exploration Rover (MER)
- Multimission Image Processing Laboratory (MIPL)
- GSFC efforts
¢ All aspects of measurement are now automated

Fault identification and measurement was previously a strictly
manual activity

¢ Measurement is implemented in DARWIN, a network appliance
+ Minimally intrusive |
+ Consistent measurement policies across multiple projects
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Software Structural Evolution

- Mars Exploration Rover (MER)
- Multimission Image Processing Laboratory (MIPL)
- Mission Data System (MDS)

¢ Structural measurements collected for release 5 of
MDS

- > 1500 builds
- > 65,000 unique modules

+ Domain scores, “domain churn”, and proportional
fault burdens computed

-~ At system level
- At individual module level
¢ > 1,400 anomaly reports analyzed
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Build |

Measurement
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Domain
Deltas
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The goal of the Darwin web portal is to provide a solid easy to use interface to the Darwin system. Contained in
this web portal you can find Manager Information, Tester Information, Darwin Education, and Project
Management
& == [ocumiert: Done , T Es e v |

This is the main page of the DARWIN measurement system’'s user
interface.
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Chart of a system’s structural evolutlon dunng development This is avallable under
“Manager Information”. Clicking on a data point will bring up a report detailing the amount of
change that occurred in each module. This plot shows some of the individual builds for

release 5 of the MDS. 12
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This report shows the amount of change that's occurred for each module
shown in this particular build (2002-02-07). 13
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Software Structural Evolution

Metric Definition
Exec Number of executable statements
NonExec Number of non-executable statements
N, Total operator count
n, Unique operator count
N, Total operand count
17, Unique operand count
Nodes Number of nodes in the module control flow graph
Edges Number of edges in the module control flow graph
Paths Number of paths in the module control flow graph
MaxPath The length of the path with the maximum edges
AvePath The average length of the paths in the module control
flow graph
Cycles Total number of cycles in the module control flow graph

Standardized definitions were developed for each measurement

JPL

California
Institute of
Technology
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Metric Domain
Exec .60 49 47
NonExec .64 53 18
N, 28 .64 65
n, 49 .70 .07
N, 28 64 65
1, .35 .90 .04
Nodes .87 31 27
Edges .88 31 27
Paths A7 -.10 .89
MaxPath .87 .35 29
AvePath .86 .34 .33
Cycles .67 22 -.02
Eigenvalues 4.79 3.13 2.24

Table above shows measurement domains resulting from PCA
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Technology
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Identification and Measurement

-+ Developing software fault models depends on
definition of what constitutes a fault

Desired characteristics of measurements,
measurement process

¢ Repeatable, accurate count of faults

¢ Measure at same level at which structural
measurements are taken

- Measure at module level (e.g., function,
method)

¢ Easily automated
- More detail in [Mun02]

16
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Identification and Measurement
- Approach

¢ Examine changes made in response to
reported failures

» Base recognition/enumeration of software

faults on the grammar of the software
system’s language

¢ Fault measurement granularity in terms of
tokens that have changed

17
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Identification and Measurement
Approach (cont’d)

+ Consider each line of text in each version of the program as
a bag of tokens

- If a change spans multiple lines of code, all lines for the
change are included in the same bag

+ Number of faults based on bag differences between

- Version of program exhibiting failures

- Version of program modified in response to failures
+ Use version control system to distinguish between

- Changes due to repair and

Changes due to functionality enhancements and other
non-repair changes

18
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Identification and Measurement

- Example 1

¢ Original statement: a=b + c;

B1 = {<a>, <=> <b> <+>, <c>}
¢ Modified statement: a=b - c;

B, = {<a>, <=>, <b>, <-> <c>}
¢ B, —B, ={<+> <>}
¢ [Bi[ =Byl By =By =2
+ One token has changed = 1 fault

19
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- Example 2
¢ Original statement: a=b - ¢:
B, ={<a>, <=>, <ph> <-> <c>}
+ Modified statement: a = ¢ - b:
B3 = {<a>, <=> <c>, <->, <pb>}
¢ B, -B;={}
*[By|=1[B;|, [B,—Bs| =0
« 1 fault representing incorrect sequencing

20
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Identification and Measurement

- Example 3
¢ Original statement: a =b - c;
: 83 = {<a>, <=> <c>, <->, <b>}
+ Modified statement: a =1+ c - b;
B, ={<a>, <=>, <1>, <+> <c>, <>, <b>}
e B;— B, ={<1>, <+>}
¢ [Bs|=6,[By =8, [Byl —|Bs| =2
¢ 2 new tokens representing 2 faults

21
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Identification and Measurement

- Available Failure/Fault Information

¢ For each failure observed during MDS testing, the
following information is available

- The names of the source file(s) involved in
repairs

- The version number(s) of the source files in
repairs

¢ Example on next slide

22
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Avallable Failure/Fault Information — Example

e

Directory File name Version Problem Report
}VlUS_Rep/source/Mds/i—wl lime/Tmgt/c++ CurrentTime.cpp 1 IAR-00|1[132
jVIDS_Rep/source/MdlewlTime/‘l‘mgt/c++ make.cfg 4 |AR-00182
;VIUS_RepIsource/lVldsﬁ’-wl Fime/Tmgt/c++ make.cfg 3 IAR-00182
:VIUS_Hep/source/Mdslr-'wl'l ime/Tmgt/c++ make.cfg 2 {AR-00182
l/VlUS__Kep{sourcell\lldsIt-w{ MmefTmgt/ct+ RTDuration.cpp 2 IAR-00182
;VIDS_Rep/source/Mds/Fw/ lime/Tmgt/ic++ RTDuration.h 2 1AR-00182
;VIDS_HeﬂEourcelMds/Fw/ lime/Tmgt/ic++ RTEpoch.cpp 2 IAR-00182
;VIUS_RepIsourceIMds/r—w/ time/Tmgt/c++ RTEpoch.h 2 IAR-00182
:WDS__Kep/source/Mds/l—w/ time/Tmgt/c++ testRTDuration.cpp 0 IAR-00182
ﬂDS_RepIsource/Mds/le lime/Tmgt/c++ | TestRTDuration.cpp 1 IAR-00182
leUS_Rep/sourcelMds/le TimelTmgtic++ TestRTDuration.cpp 0 IAR-00182
;VIUS__Hep/sourcelMds/le Hime/ mgt/c++ TestRTDuration.h 2 IAR-00182
:VIUS_Kep/source/Mds/le Fime/Tmgt/c++ TestRTDuration.h 1 IAR-00182

‘ I/VlUS_Replsource/Mdsll-wll‘ime/T mgt/c++ TestRTDuration.h 0 IAR-00182
LMDSJ(ep/source/Mdlew/'l'imel rmgt/c++ testRTEpoch.cpp 1 IAR-00182
:WDS_ReWgourcelMds/l-w/ rime/Tmgtic++ TmgtException.cpp 0 IAR-00182
MUS_Rep/source/Mds/Fw/Time/Tmgt/c++ TmgtException.h 0 IAR-00182

JPL

California
Institute of
Technology
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Rep.source.Mds.Fw.Car.ct++.ArchetypeConnectorFactory.cpp 1 42

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++. ArchitectureElementDefinition.cpp 1 35

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchitecturelnstanceRegistry.cpp 1 79

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchitecturelnstanceRegqistry.cpp 2 8

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchitecturelnstanceRegistry.cpp 3 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchManagedinstance.cpp 1 36

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.Callableinterface.cpp 1 48

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.Callablelnterface.cpp 2 3

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.CGIMethodReqistration.cpp 1 4

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.Collection.cpp 1 12

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.Collection.cpp 2 37

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentComponentLinkinstance.cpp 1 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentComponentLinklnstance.cpp 2 65

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentConnectorLinkinstance.cpp 1 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentConnectorlinkinstance.cpp 2 50

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentObjeciLinkinstance.cpp 1 27

MDS

Fauit

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentObijectLinkinstanceArguments.cpp 1 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentRegistration.cpp 1 2

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteComponentinstance.cpp 1 8

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteComponentinstance.cpp 2 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteConnectorinstance.cpp 1 42

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteConnectorinstance.cpp 2 27

Output format:
<Source file name> <source file version> <fault count>

24
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- Fault models developed from:

» Measured structural evolution (cumulative
amount of change for each module).

¢ Number of faults repaired for each module.

- Analysis indicates that the amount of

structural evolution is related to the number of
faults repaired [Nik03].

25
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Regression ANOVA
Source Sum of Squares |  df Mean Square F Sig.
Regression 10091546 3 3363848 293 P<.01
Residual 6430656 560 11483
Total 16522203 563
Regression Model
Model Coefficients t Sig.
(Constant) 18.24 3.5 P<.01
Domain 1 Churn 21.63 17.3 P<.01
Domain 2 Churn -.59 -.3 p>.01
Domain 3 Churn 03 7 p>.01
-~ Quality of the Regressnon Model
R Square Adjusted R Std. Error of
Square the Estimate
Model 182 011 .609 107.16024
Summary 26
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Fault Content

Fault Counting Method vs. Model Quality
- Which fault counting methods produce better
fault models?
+ Number of tokens changed

+ Number of “sed” commands required to
make each change

¢ Number of modules changed

27
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Fault Counting Method vs. Model Quality
Number of tokens changed
Model Coefficients t Sig.
(Constant) 18.24 3.5 p<.05
Domain 1 Churn 21.63 17.3 p<.05
Domain 2 Churn -.59 -.3 p>.05
Domain 3 Churn 93 7 p>.05
( 9
Number of “sed” commands
Model Coefficients t Sig.
(Constant) 2.484 14.555 p<.05
Domain 1 Churn 151 3.411 p<.05
Domain 2 Churn 529 6.489 P<.05
Domain 3 Churn -0.087 -1.791 p>.05
Number of modules changed
Model Coefficients Sig.
(Constant) 1.200 35.995 p<.05
Domain 1 Churn 0.009 1.041 p>.05
Domain 2 Churn 0.143 8.920 p<.05
Domain 3 Churn -0.043 -4 483 p<.05

28
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Fault Counting Method vs. Model Quality

Model R Square Adjusted R Std. Error of
: Square the Estimate
Model 1 — tokens 0.61 .061 107.16
changed :
Model 2 — number of 019 0.19| 3.88
“sed” commands
Model 3 — number of 0.14 0.14 0.76
changed modules

Comparison of Model Quality

29
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Table of Contents

1. Introduction
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2.1. Data Requirements
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4.2.
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5. References

APPENDICES

A. Importing and Measuring a Source Repository

Al

Creating a Development Environment Copy of the
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