S arL

Institute of

" Technology
Infusing Software Fault Measurement
and Modeling Techniques
Allen Nikora Al Gallo John Munson
Software Quality Assurance Software Assurance Technology Department of
Group Center ' Computer Science
Jet Propulsion Laboratory Goddard Space Flight Center University of ldaho

California Institute of Technology Greenbelt, MD Moscow, |D

NASA Code Q Software Program Center Initiative UPN 323-08; Kenneth
McGill, Research Lead

OSMA Software Assurance Symposium 2003
July 30 — Aug 1, 2003

The work described in this presentation was carried out at the Jet Propulsion Laboratory,
California Institute of Technology. This work is sponsored by the National Aeronautics and
Space Administration’s Office of Safety and Mission Assurance under the NASA Software
Program led by the NASA Software IV&V Facility. This activity is managed locally at JPL
through the Assurance Technology Program Office (ATPO).

JPL

California

Institute of
g e n a Technology

~ Overview

- Benefits

- Approach

- Status
- Current Results

- Papers and Presentations Resulting From
This Cl

Component

wpes of

Structural Measurements

Specifications

MeasUren ents

Overview

JPLU

California
Institute of
Technology

Objectives: Gain a better quantitative understanding of the effects of
requirements changes on fault content of implemented system. Gain a
better understanding of the type of faults that are inserted into a software

system during its lifetime.

Use measurements to PREDICT faults, and so achieve better <

of Specification
7]
4
o
=
=
=
e
44
<
4]
&)
o]
(3
5
Measure- o
)
) ments of
Function Number of given
Count Exceptions type for
Environmental given
Constraints module

Structural Measurements

of Source Code

rplanning (e.g., time to allocate for
testing, identify fault prone modules)
guidance (¢.g., choose design that
will lead to fewer faults)
assessment (c.g.. know when
close to being done testing

Estimated Fault Counts by Type
for Implemented System

2B
2 | 4 =1 2 1
3 ;
37 6 =B 3 L5 Numbers
w of
- .
& estimated
8 I‘z'lull‘s of
, E given
4] s = | 35| 125 type in
. - V) B given
Lincs of Max Conditional ~ Execution module
Source Nesting Execution Order
Code Depth Faults Fauits types of
Total measurements Incorrect Variable{ Jaulls
Operands Computation ~ Usage
Faults

3

JPL

California
Institute of
Technology

Goals

Develop a viable method of infusing the measurement and fault
modeling techniques developed during the first two years of this
task into software development environments at GSFC and JPL

¢ Collaborate with SATC and selected projects at GSFC
+ Continue and extend collaboration with projects at JPL

Develop training materials for software measurement for
software engineers/software assurance personnel

¢ Measurement background

+ Using DARWIN Network Appliance
+ QOrganizational interfaces

¢ Interpreting output

JPL

California

"
f Institute of
Technology

- Provide quantitative information as a basis for
making decisions about software quality.

- Use easily obtained metrics to identify
software components that pose a risk 1o
software and system quality.

- Measurement framework can be used to
continue learning as products and processes
evolve.

JAPU

California

Approach e

Measure structural evolution on collaborating development
efforts

+ Structural measurements for several JPL projects collected
+ Several GSFC projects have shown interest

Analyze failure data
+ ldentify faults associated with reported failures

- Relies on:
« All failures being recorded

« Failure reports specifying which versions of which
files implement changes responding to the reported
failure.

+ Count number of repaired faults according to token-count
technique reported in ISSRE’02 [Mun02]. (Fault count is
dependent variable)

Analyze relationships between number of faults repaired and
measured structural evolution during development

o L
Approach (cont'd) e

- ldentify relationships between requirements change
requests and implemented quality/reliability

+ Measure structural characteristics of requirements
change requests (CRs).

¢ Track CR through implementation and test

+ Analyze failure reports to identify faults inserted
while implementing a CR

Develop training materials for software measurement
for software engineers/software assurance personnel

+ DARWIN user’s guide nearly complete
+ Measurement class materials being prepared

JPL
S tat u S | California

Institute of
Technology

Follow-on to previous 2-year effort, “Estimating and Controlling
Software Fault Content More Effectively”.

Investigated relationships between requirements risk and reliability.

Installed improved version of structural and fault measurement
framework on JPL development efforts

¢ Participating efforts
- Mission Data System (MDS)
- Mars Exploration Rover (MER)
- Multimission Image Processing Laboratory (MIPL)
- GSFC efforts
¢ All aspects of measurement are now automated

Fault identification and measurement was previously a strictly
manual activity

¢ Measurement is implemented in DARWIN, a network appliance
+ Minimally intrusive |
+ Consistent measurement policies across multiple projects

@ Current Results: Measuring 7

Software Structural Evolution

- Mars Exploration Rover (MER)
- Multimission Image Processing Laboratory (MIPL)
- Mission Data System (MDS)

¢ Structural measurements collected for release 5 of
MDS

- > 1500 builds
- > 65,000 unique modules

+ Domain scores, “domain churn”, and proportional
fault burdens computed

-~ At system level
- At individual module level
¢ > 1,400 anomaly reports analyzed

@ Current Results: Measuring
Software Structural Evolution

Build |

Measurement

Baselined Build i

PCA Domain Scores

Baselined Build |

JPL

California
Institute of
Technology

Domain
Churn

Domain
Deltas

10

JPL

DARWIN Portal - Main Page &

Technology

R Darwin - Netscape - =10] x|

Fle “Edt View [Go 'Communicator elp :)

T Back' - fonwod . Reload Home ™ Seach Metscape Pinl © Secirly - Shop . - Floy ‘ -
" Bookmaks b, Locstion [ip//SwMeasuroment plnasa.gov/ i <] €7 whats Rekled
B0SS . ELIAS - JPUs | Ros PrionSed EIS Messaging € JPL Securiy (U JPL KnoiwWho SCR Help. Tabl_ Darwin' Hong Kong Toui_ EAD Home - PuTTY Documents

Darwin - Darwin Portal

Softveare Systeme e

Navigation
Darwin Main

Manager
Information

Tester Infonnmation

Education

Project i\'Ianager

View Available
Databases
Feedback
The goal of the Darwin web portal is to provide a solid easy to use interface to the Darwin system. Contained in
this web portal you can find Manager Information, Tester Information, Darwin Education, and Project
Management
& == [ocumiert: Done , T Es e v |

This is the main page of the DARWIN measurement system’'s user
interface.
11

JPL
DARWIN Structural Evolution Plot s

Technology

@ Graph of Code Churn and Code Delta in the project project: Th= Netsespe
Flle Edut Vlew Go Bookmarks Tools Wndow Help

» i

& ' ¢ Graph of Code Churn and Code Delta inth... |

@ [http l!swmeasurement)pl nasa. gov!cgtlgraph cgi I [Q Search] C:;

Darwin

Soltware Systems Interrational

Darwin Portal

Navigaton Cpaph of Code Churn and Code Delta for the project
Darwin Main fd ms_proj ect_l b. |

Manager
Information T y T T T T T T
) 700000 |-
Tester
Information 600000 -
] 500000 | i

Education B o

400000 [
Project o /

2 300000 [
Manager 3

2006000 |- /
. ' 100000 P
View Available i
_— o F ot tnp,rrhur‘nid"ﬁ dat" using 1:2 #
Databases \))) J Stnp/del baldZ6 dat! using 132+
10701 0101 04701 07704 10/04 0101 0d4/04 07/01 10/01 01/01 04/01
Feedback Date
Click here for help

@ =2 & @F) | Document: Done (1625 56cs) -~ B , ' I T R = [eF

Chart of a system’s structural evolutlon dunng development This is avallable under
“Manager Information”. Clicking on a data point will bring up a report detailing the amount of
change that occurred in each module. This plot shows some of the individual builds for

release 5 of the MDS. 12

- & DARWIN - Module- Level Build Detail it

& (Non-zero) Modules for build 2002-02-07 of project project_1b, sorted by Churd < Nekgeapt 7 - 083 it : Sk e 185} TCChnOlOgy
AFEEQW‘@WWYWSW% !

)

A Mal G}Hnme ﬁ'\kado VNetscme QSeur.h] BBooluMk %aoss ‘%lns.den %Dm %mym Meeu-gm \eRosPsimSe'l %Elsmssachu % PLSe:uty(»nx&ww sca

n_[%(uwmn)mﬂeﬁorwdzmzmwo 1 g i)
(Non-zero) Modules for build 2002-02-07 of project project_1b, sorted by Churn since baseline. f
‘))) o i {Churn From | |
E Modulename “Baseline
}nc;lposnt(ostream& error))) o 8

Istumpf03(double x, double c0, doubled c1, double& c2, double& c3) T T 525230847
coarseNear(const Mds:Fw: Math:Dbl3Vec& pos, Mds:Fw:Math:Dbl3Vec&: near, double& lambda) e ’ T 515.488980
iEactors(Axis 20, Axis al, Axis a2, Quatemion& qO, Quatemion& ql, Quaternion& q2) T '459.185853
[validinputs(ostream& error) T T 1349.297666
anContcntOQ\dL Parser parser, m‘lstanTachva const ENCODING *cn;: const char *s, const char vendv const char *ﬁext.rph')rw e !329.523165
cartes2sphere(Dim dim, const Mds:Fw:Math Dbi3Vecd: cartesPos, const Mds: Fo-Math: Dbl3Veck cartesVel, const Mds:Fw:Math:Dbi3Vecd: cartesAcc, double®v) 319.309469
consh’uctors(ostream ¢ en'or) 1‘318.905140
doProlog(OML_Parser parser, const ENCODING *enc const char *3, const char *end mt tok const char *ncxt const char **nextPtr) o o !311.585820
examples() o S 1309.099387
}gcthxDOF(const Mds:Fw: Time:Tmgt:-RTEpoch& time) T T 1301.170203
check(ostream& error, const char™ test, const Position& p, const Mds _Fw Math Dbi3Vecd nghLPos)) T T 75‘3(.)-(71133324

296781369
289.353008
o 1279141671
n(ostream& crror) T o 1!274.478272

rultiplication(oskeam&?rfor) e 7 S ' v S o S ’§70533463
‘elhpsond(osh'eam& error) o T ') v o . l266891307 Y
iTestDiscrete: TestDiscrete() e ﬁ61.403950
Testintervaltic: TestIntervallic() T T e o [55'2.444604
fpolishchear(const Mds: Fw:Math:Dbl3Vec& pos, Mds::Fw:Maﬂ):ISBiBVe;gﬁcar. double& lambda) e o 'é};;{‘)ﬂ‘g ’
;subtraction(ostream& error } ’ T T . 54;7478985”
storeAtts(XML_Parser parser, const ENCODING *enc, const char "altSt;,' ’I‘j\a_NA:ME *tagNamePtr, BINDING ’*bindingsPt;') [240.951 958)
GreaseFilterTest(Dispatch& r, const std::string& key, const CGLArgs& args) e ’240295311_
quaternions(ostream& error) T - [239.337829
soTestd A O . . e e - U V§239.029389
cartes2cylin(Dim dim, const Mds: Fw:Math:Dbl3Vec& cartesPos, const Mds:Fw:Math-Dbi3Vec& cartesVel, const Mds:Fw:; Math-Dbl3Vec& cartesAce, double™ v) I229 384465
'carmain(mt arge, char® argv(]) [225. 550063 _1
@ 2 & OF (] 1 ocument: Dore (22031 34cs) ’ - ’ - - . ; : lqmr*’g ggv‘,

This report shows the amount of change that's occurred for each module
shown in this particular build (2002-02-07). 13

S

Current Results: Measuring
Software Structural Evolution

Metric Definition
Exec Number of executable statements
NonExec Number of non-executable statements
N, Total operator count
n, Unique operator count
N, Total operand count
17, Unique operand count
Nodes Number of nodes in the module control flow graph
Edges Number of edges in the module control flow graph
Paths Number of paths in the module control flow graph
MaxPath The length of the path with the maximum edges
AvePath The average length of the paths in the module control
flow graph
Cycles Total number of cycles in the module control flow graph

Standardized definitions were developed for each measurement

JPL

California
Institute of
Technology

14

@ Current Results: Measuring
Software Structural Evolution

Metric Domain
Exec .60 49 47
NonExec .64 53 18
N, 28 .64 65
n, 49 .70 .07
N, 28 64 65
1, .35 .90 .04
Nodes .87 31 27
Edges .88 31 27
Paths A7 -.10 .89
MaxPath .87 .35 29
AvePath .86 .34 .33
Cycles .67 22 -.02
Eigenvalues 4.79 3.13 2.24

Table above shows measurement domains resulting from PCA

JPL

California
Institute of
Technology

15

(ino Current Results: Fault 2Bt

Institute of
Technology

Identification and Measurement

-+ Developing software fault models depends on
definition of what constitutes a fault

Desired characteristics of measurements,
measurement process

¢ Repeatable, accurate count of faults

¢ Measure at same level at which structural
measurements are taken

- Measure at module level (e.g., function,
method)

¢ Easily automated
- More detail in [Mun02]

16

@ CurrentResults: Fault -

Identification and Measurement
- Approach

¢ Examine changes made in response to
reported failures

» Base recognition/enumeration of software

faults on the grammar of the software
system’s language

¢ Fault measurement granularity in terms of
tokens that have changed

17

S

Current Results: Fault P%

Identification and Measurement
Approach (cont’d)

+ Consider each line of text in each version of the program as
a bag of tokens

- If a change spans multiple lines of code, all lines for the
change are included in the same bag

+ Number of faults based on bag differences between

- Version of program exhibiting failures

- Version of program modified in response to failures
+ Use version control system to distinguish between

- Changes due to repair and

Changes due to functionality enhancements and other
non-repair changes

18

S

Current Results: Fault 7&-

Technology

Identification and Measurement

- Example 1

¢ Original statement: a=b + c;

B1 = {<a>, <=> <+>, <c>}
¢ Modified statement: a=b - c;

B, = {<a>, <=>, , <-> <c>}
¢ B, —B, ={<+> <>}
¢ [Bi[=Byl By =By =2
+ One token has changed = 1 fault

19

S

- Example 2
¢ Original statement: a=b - ¢:
B, ={<a>, <=>, <ph> <-> <c>}
+ Modified statement: a = ¢ - b:
B3 = {<a>, <=> <c>, <->, <pb>}
¢ B, -B;={}
*[By|=1[B;|, [B,—Bs| =0
« 1 fault representing incorrect sequencing

20

(201} Current Results: Fault 7--

Institute of
Technology

Identification and Measurement

- Example 3
¢ Original statement: a =b - c;
: 83 = {<a>, <=> <c>, <->, }
+ Modified statement: a =1+ c - b;
B, ={<a>, <=>, <1>, <+> <c>, <>, }
e B;— B, ={<1>, <+>}
¢ [Bs|=6,[By =8, [Byl —|Bs| =2
¢ 2 new tokens representing 2 faults

21

@

Current Results: Fault 2t*

Institute of
Technology

Identification and Measurement

- Available Failure/Fault Information

¢ For each failure observed during MDS testing, the
following information is available

- The names of the source file(s) involved in
repairs

- The version number(s) of the source files in
repairs

¢ Example on next slide

22

Current Results: Fault

Identification and Measurement

Avallable Failure/Fault Information — Example

e

Directory File name Version Problem Report
}VlUS_Rep/source/Mds/i—wl lime/Tmgt/c++ CurrentTime.cpp 1 IAR-00|1[132
jVIDS_Rep/source/MdlewlTime/‘l‘mgt/c++ make.cfg 4 |AR-00182
;VIUS_RepIsource/lVldsﬁ’-wl Fime/Tmgt/c++ make.cfg 3 IAR-00182
:VIUS_Hep/source/Mdslr-'wl'l ime/Tmgt/c++ make.cfg 2 {AR-00182
l/VlUS__Kep{sourcell\lldsIt-w{ MmefTmgt/ct+ RTDuration.cpp 2 IAR-00182
;VIDS_Rep/source/Mds/Fw/ lime/Tmgt/ic++ RTDuration.h 2 1AR-00182
;VIDS_HeﬂEourcelMds/Fw/ lime/Tmgt/ic++ RTEpoch.cpp 2 IAR-00182
;VIUS_RepIsourceIMds/r—w/ time/Tmgt/c++ RTEpoch.h 2 IAR-00182
:WDS__Kep/source/Mds/l—w/ time/Tmgt/c++ testRTDuration.cpp 0 IAR-00182
ﬂDS_RepIsource/Mds/le lime/Tmgt/c++ | TestRTDuration.cpp 1 IAR-00182
leUS_Rep/sourcelMds/le TimelTmgtic++ TestRTDuration.cpp 0 IAR-00182
;VIUS__Hep/sourcelMds/le Hime/ mgt/c++ TestRTDuration.h 2 IAR-00182
:VIUS_Kep/source/Mds/le Fime/Tmgt/c++ TestRTDuration.h 1 IAR-00182

‘ I/VlUS_Replsource/Mdsll-wll‘ime/T mgt/c++ TestRTDuration.h 0 IAR-00182
LMDSJ(ep/source/Mdlew/'l'imel rmgt/c++ testRTEpoch.cpp 1 IAR-00182
:WDS_ReWgourcelMds/l-w/ rime/Tmgtic++ TmgtException.cpp 0 IAR-00182
MUS_Rep/source/Mds/Fw/Time/Tmgt/c++ TmgtException.h 0 IAR-00182

JPL

California
Institute of
Technology

23

MDS

Fault

JPL

Current Results: Fault =~

Identification and Measurement
Fault Identification and Counting Tool Output

count/MDS

Institute of
Technology

Rep.source.Mds.Fw.Car.ct++.ArchetypeConnectorFactory.cpp 1 42

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++. ArchitectureElementDefinition.cpp 1 35

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchitecturelnstanceRegistry.cpp 1 79

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchitecturelnstanceRegqistry.cpp 2 8

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchitecturelnstanceRegistry.cpp 3 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchManagedinstance.cpp 1 36

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.Callableinterface.cpp 1 48

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.Callablelnterface.cpp 2 3

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.CGIMethodReqistration.cpp 1 4

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.Collection.cpp 1 12

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.Collection.cpp 2 37

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentComponentLinkinstance.cpp 1 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentComponentLinklnstance.cpp 2 65

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentConnectorLinkinstance.cpp 1 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentConnectorlinkinstance.cpp 2 50

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentObjeciLinkinstance.cpp 1 27

MDS

Fauit

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentObijectLinkinstanceArguments.cpp 1 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentRegistration.cpp 1 2

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteComponentinstance.cpp 1 8

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteComponentinstance.cpp 2 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteConnectorinstance.cpp 1 42

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteConnectorinstance.cpp 2 27

Output format:
<Source file name> <source file version> <fault count>

24

S

Current Results: Modeling o-

Fault Content o

Technology

- Fault models developed from:

» Measured structural evolution (cumulative
amount of change for each module).

¢ Number of faults repaired for each module.

- Analysis indicates that the amount of

structural evolution is related to the number of
faults repaired [Nik03].

25

Current Results: Modeling

JPL

California
Institute of
Technology
Regression ANOVA
Source Sum of Squares | df Mean Square F Sig.
Regression 10091546 3 3363848 293 P<.01
Residual 6430656 560 11483
Total 16522203 563
Regression Model
Model Coefficients t Sig.
(Constant) 18.24 3.5 P<.01
Domain 1 Churn 21.63 17.3 P<.01
Domain 2 Churn -.59 -.3 p>.01
Domain 3 Churn 03 7 p>.01
-~ Quality of the Regressnon Model
R Square Adjusted R Std. Error of
Square the Estimate
Model 182 011 .609 107.16024
Summary 26

JPU

@ Current Results: Modeling g
Fault Content

Fault Counting Method vs. Model Quality
- Which fault counting methods produce better
fault models?
+ Number of tokens changed

+ Number of “sed” commands required to
make each change

¢ Number of modules changed

27

' & Current Results: Modeling Fault 4PL

California
Institute of
Content
Fault Counting Method vs. Model Quality
Number of tokens changed
Model Coefficients t Sig.
(Constant) 18.24 3.5 p<.05
Domain 1 Churn 21.63 17.3 p<.05
Domain 2 Churn -.59 -.3 p>.05
Domain 3 Churn 93 7 p>.05
(9
Number of “sed” commands
Model Coefficients t Sig.
(Constant) 2.484 14.555 p<.05
Domain 1 Churn 151 3.411 p<.05
Domain 2 Churn 529 6.489 P<.05
Domain 3 Churn -0.087 -1.791 p>.05
Number of modules changed
Model Coefficients Sig.
(Constant) 1.200 35.995 p<.05
Domain 1 Churn 0.009 1.041 p>.05
Domain 2 Churn 0.143 8.920 p<.05
Domain 3 Churn -0.043 -4 483 p<.05

28

JPL
Current Results: Modeling Fault g
Content

Fault Counting Method vs. Model Quality

Model R Square Adjusted R Std. Error of
: Square the Estimate
Model 1 — tokens 0.61 .061 107.16
changed :
Model 2 — number of 019 0.19| 3.88
“sed” commands
Model 3 — number of 0.14 0.14 0.76
changed modules

Comparison of Model Quality

29

PUL
@ Current Results: User’s Guide T
Table of Contents

1. Introduction

1.1. Purpose
1.2. Scope

2. Measuring a Software System’s Structural

Evolution

2.1. Data Requirements
2.2. Creating a New Project in Darwin
2.3. Importing the Source Repository
2.4. Initial Structural Measurement
2.5. Analyzing Structural Evolution

2.6.

2.5.1. Establishing a Baseline
2.5.2. Computing Structural Change
Structural Measurement Outputs

3. Measuring the Number of Fauilts Repaired

3.1.
3.2.
3.3.
34.
3.5.

Data Requirements
Identifying Changes
Counting Fauits

Fault Measurement Qutputs
Potential Sources of Noise

Technology

4. Developing Fault Models

4.1.
4.2.
4.3.

Data Requirements
Module-Level Fault Models
System-Level Fault Models

5. References

APPENDICES

A. Importing and Measuring a Source Repository

Al

Creating a Development Environment Copy of the
Repository

A.2. Creating a Copy of the Repository on Darwin

A.2.1. Creating the Repository Structure
A.2.2. Copying Files Into the Repository

A.3. Measuring a System’s Evolution
B. ldentifying and Counting Repaired Faults

B.1.
B.2.
B.3.
B.4.
B.5.
B.6.

LogSpecifiedVersionDiffs.pl
strip.pl

bagdiff4.pl

final.pl

extract.pl

CPPLexer.pm
30

S

[Nik03]
[Ammar03]
[Nik03a]
[Nik03b]
[Nik03c]
[Nik03d]

[Mun02]

Papers and Presentations 2%
Resulting From This Cl

JPL

Institute of
Technology

A. Nikora, J. Munson, “The Effects of Fault Counting Methods on Fault
Model Quality”, submitted to the 2003 International Symposium on
Software Reliability Engineering (ISSRE2003).

K. Ammar, T. Menzies, A. Nikora, “How Simple is Software Defect
Detection?”, submitted to the 2003 International Symposium on Software
Reliability Engineering (ISSRE2003).

A. Nikora, J. Munson, “Predicting Fault Content for Evolving Software
Systems”, presented at 2003 Assurance Technology Symposium.

A. Nikora, J. Munson, “Developing Fault Models for Space Mission
Software”, to be presented at 2003 JPL-sponsored International
Conference on Space Mission Challenges for Information Technology, July
13-16, Pasadena, CA.

A. Nikora, J. Munson, “Understanding the Nature of Software Evolution”, to

appear, proceedings of the 2003 International Conference on Software
Maintenance (ICSM2003).

A. Nikora, J. Munson, “Developing Fault Predictors for Evolving Software
Systems”, to appear, proceedings of the 2003 International Metrics
Symposium (Metrics2003).

J. Munson, A. Nikora, “Toward A Quantifiable Definition of Software
Faults”, proceedings of the International Symposium on Software Reliability
Engineering, Annapolis, MD, November 12-15, 2002

31

Papers and Presentations -

Resulting From This CI

Technology
[Schn02] N. Schneidewind, “Requirements Risk versus. Reliability”, presented at the
International Symposium on Software Reliability Engineering, Annapolis,
MD, November 12-15, 2002

[Schn02a] N. Schneidewind, “An Integrated Failure Detection and Maintenance
Model”, presented at the 8" IEEE Workshop on Empirical Studies of
Software Maintenace (WESS), October 2, 2002, Montreal, Quebec,
Canada '

[Nik02] A. Nikora, M. Feather, H. Kwong-Fu, J. Hihn, R. Lutz, C. Mikulski, J.
Munson, J. Powell, “Software Metrics In Use at JPL Applications and
Research’, 8" [EEE International Software Metrics Symposium, June 4-7,
2002, Ottawa, Ontario, Canada

[NikO2a] A. Nikora, J. Munson, “Automated Software Fault Measurement”,
Assurance Technology Conference, Glenn Research Center, May 29-30,
2002

[Schn01] Norman F. Schneidewind, “Investigation of Logistic Regression as a

Discriminant of Software Quality”, proceedings of the International Metrics
Symposium, 2001
[NikO1] A. Nikora, J. Munson, “A Practical Software Fault Measurement and
Estimation Framework”, Industrial Practices presentation, International
Symposium on Software Reliability Engineering, Hong Kong, November
- 27-30, 2001

32

S

Papers and Presentations 7

Resulting From This CI

Technology
[Schn01a] N. Schneidewind, “Modelling the Fault Correction Process”, proceedings of
the International Symposium on Software Reliability Engineering, Hong
Kong, November 27-30, 2001

33

