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Abstract 

This paper reports on the characteristics of a future 
deep space computing application. This includes the 
testbed used to make the measurements, the application 
suite itsee the scenarios measured, the detailed power 
and performance measurements taken, and the timing 
characteristics of the system. 

1. Introduction 

As part of the MORPH project [I]  on inherently low 
power microprocessor architectures, a collaboration of 
the Univ. of Notre Dame, JPL, and the State University 
of New York at Binghamton have developed a testbed 
of a future deep space mission, DEEP IMPACT [2], and 
instrumented it to provide insight into very realistic 
processing loads and timing requirements under a vari- 
ety of scenarios. Our original project goal was to use 
this data to baseline time and power data against which 
our proposed new architectures [ 5 ]  would be, and have 
been [4], evaluated. However, the wealth of data from 
this testbed is useful for far more than just our project, 
since they represent a unique view into a type of appli- 
cation that will become of increasing importance, 
namely embedded systems involving multiple different 
tasks running under real-time constraints. 

This paper will describe the testbed facility, an appli- 
cation suite that when running on the testbench mirrors 
closely the code expected to run on the real mission, 
and summarize the key characteristics of load pattems 
derived from this testbed. 

2. An Instrumented TestBench 

The testbench itself is modified single board com- 
puter (SBC) of the same type and performance as is 
projected to fly in several future missions. Modifica- 
tions to the board include chip extenders to allow 
access to individual chips. This testbench was then con- 
nected to a testbed that provided a simulation of the rest 

of the spacecraft, in real time. A methodology was then 
developed that allowed instrumentation connected to 
this testbench to perform significant and detailed power 
and timing measurements, while application scenarios 
were being run. 

2.1. The Modified Single Board Computer 

We chose an SBC designed by WindRiver that 
housed a Motorola PowerPC 750 processor, 128 MB 
RAM, a serial port, and two PCI ports. It runs VxWork- 
stm as its operating system, just as the real system. One 
PCI port contained a Network Interface Card, while the 
other PCI port contained a reflective shared memory 
card. This board was a prime choice due to its use of a 
PGA (Pin Grid Array) connection to attach the proces- 
sor chip to the board. This allowed us to access all the 
pins on the processor, and thus directly measure current 
between the power and ground pins on the processor. 
Furthermore, access to all the I/O pins allows the use of 
a logic analyzer to accurately obtain a timing profile of 
the processor's interaction with peripheral devices, e.g. 
bridge controllers, memory, etc. 

Modifications as seen in Figure 1 were made to the 
SBC to allow access to circuit connections designated 
for power to the processor. An oscilloscope with a cur- 
rent probe measured the current being drawn by the 
CPU and memory. A power distribution module pro- 
vided easy access via a connector to the board housing 

Figure 1. The single board computer 

http://nasa.gov


Figure 2. Current probe 
the processor and memory. Calculating power from the 
current measurements was simply done by measuring 
the voltage at the CPU and memory and using the prod- 
uct of the two to determine the instantaneous power 
consumption. Figure 2 pictures an oscilloscope with the 
current probe attached to the SBC to measure power. 
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2.2. Monitoring Facilities 
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JPL supports an Autonomous Test Bench, known as 
Babybed, which had been previously been developed 
for mission software development and performance 
benchmarking, as shown in Figure 3. The system runs 
on two processors that share a common VME or PCI 
back plane. One processor runs a simulation of a virtual 
vehicle and the second processor runs the control soft- 
ware that drives the simulated vehicle, currently a 
three-axis stabilized, free-floating spacecraft. The simu- 
lation is a hlly end to end real-time software simulation 
which allows actual mission fight software to commu- 
nicate with virtual spacecraft devices like actuators and 
sensors, as well as power, telecom and science hard- 
ware. As commands are issued and executed by the vir- 
tual devices, the spacecraft dynamics are affected 
accordingly and the sensor models sense the results. 

The autonomous test bench also includes two single- 
board computers communicating via shared memory. 
implemented by using two reflective memory cards and 
a fiber optical cable providing transparent communica- 
tion between them. One of the SBCs is responsible for 
running the flight software. The other single-board 

Figure 3. Babybed autonomous test bed 
computer is responsible for running a space environ- 
ment simulator as inputs to the flight software. 

A performance profile was generated for the flight 
software in terms of cache misses, CPU utilization, and 
MIPS. These figures can be seen in Table I .. 

The test bench described in the previous section was 
ported to the autonomous test bench by replacing the 
single-board computer running the flight software with 
the power measurements test bench. Because the power 
measurements test bench provided two PCI slots, a 
reflective memory card with a PCI interface was used 
to enable communication of the space environment 
simulator with the power measurement test bench. 

2.3. Measurement Methodologies 

Power profiling was performed at three levels of 
granularity. At the fine-grain level, power was mea- 
sured at the instruction-level. The instruction set of the 
processor used for experiments, a Motorola PowerPC 
750, was profiled comprehensively, Le. a measurement 
for each instruction in the instruction-set was obtained. 
The basic idea for profiling was to place a single 
instruction into a loop, and repeat it until it reaches a 
steady state. At this point we could measure the power 
of that instruction. More details of this method is docu- 
mented in [6] ,  with a subset seen in Figure 4. 

At the medium-grain level, power was measured at 
the event-level. Events at the micro-architecture level 
included data-forwarding, cache accesses, floating- 
point pipelining, instruction units, etc. A sequence of 
instructions was programmed with the understanding 

Table 1. Basic processor characteristics 
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that certain events would take place. For example, 
sequencing an add instruction with dependencies on 
each previous add instruction would invoke the data- 
forwarding mechanism to avoid pipeline stalls. Further 
details on the methodology and analysis of these results 
can also be found in [6]. 

Lastly, coarse-grain measurements were performed 
at the operating system level by analyzing multiple run- 
ning tasks and associated power profiles with the tasks. 
This paper focuses on these results. 

To identify tasks that were executing during a test 
we invoked a WindRiver tool called Windview. This 
allowed us to generate a timeline of software activity. 
The start and stop time of each task when it took control 
of the processor was shown graphically and could also 
be stored in a database file. Combined with the power 
measurements, the relationship between the power pro- 
file of software and the tasks running were trivial. 

mum IUZ 

2.4. Power Measurements 
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Power profiles were taken from a subset of the entire 
software suite. The modules we chose to profile 
included image compression, orbit determination, 
maneuver planning, and several operating modes. The 
first three mentioned are of importance because they 
show dynamic profiles that reflect their computational 
complexity. Figure 5 shows power profiles for these. 

2.5. Timing Measurements 

be seen in Figure 6. As can be seen, there is a close cor- 
relation between power profiles and timing profiles. 

3. The Application Suite 

The application suite used in Morph is derived from 
the Deep Space 1 (DSl) mission, and modified to 
reflect potential use on the Deep Impact mission. Deep 
Impact involves a comet orbiter that includes an instru- 
mented spike-like probe. After release from the orbiter, 
the probe will impact the comet. Visual analysis of the 
dispersal from the orbiter should yield significant 
insight into the interior nature of the comet. 

The DSI flight software is comprised of some 60 
tasks that are initiated and initialized at startup, and run 
forever. The tasks vary in priority. Some tasks wake up 
and execute in response to interrupts, and others run 
when the scheduler activates them. The software oper- 
ates loosely on a 1 second cycle. Nominally all tasks 
run at least once every second. Some tasks run more 
frequently (4Hz and 8Hz rates). The general procedure 
is for a task to wake up, run and go back to sleep (pend- 
ing state). 

When a task wakes up, it performs some basic duties 
and/or check its inter-process communications (IPC) 
queue(s). It will attempt to complete its duties and/or 
process all the data in its queue(s) before it is suspended 

The timing profiles produced by WindView became 
very useful in determining which task was consuming 
power at different times. Graphically, the timing pro- 
files for each of the three modules mentioned above can 

Figure 5. Sample power profiles 



by the operating system. Any unfinished business is 
picked up the next time the task awakes. Naturally, 
tasks with high priority have more opportunity to exe- 
cute each second than lower priority tasks. As a result, 
busy high priority tasks may prevent lower priority 
tasks from ever waking up within some second. 

When there is not much activity and all tasks finish 
early within the 1 second interval, the tIdleTask uses the 
remaining time. As system activity increases, the 
amount of time the tIdleTask runs becomes less and 
less. Further details can be found in [3]. 

Due to ITAR restrictions, the DSI flight software is 
not publicly available to the research community. As an 
alternative, a software module from the suite was modi- 
fied so that it could be made publicly available. The 
module chosen, MICAS, is an image compression algo- 
rithm. The computational complexity coupled with the 
need for generous amounts of memory I/O made this a 
good choice for power profiling and optimization. 

In addition to providing the MICAS source, JPL per- 
formed both power and performance characterization of 

Figure 7. MICAS power details 
the software without any optimizations. A general 
power profile of MICAS can be seen in Figure 7(a). 

WindView provided a timing profile of the tasks 
running. The results from WindView can be seen in 
Figure 7(b). As can be seen there is a strong correlation 
between the power and timing profiles. 

Each task trace shown graphically was exported to 
an Excel worksheet displaying the timestamps of each 
task's start and stop time, as demonstrated in Figure 8. 

3.1. Simulated Flight Scenarios 

Seven different flight scenarios were profiled for 
power consumption and time traces. The first scenario 
(prelaunch) simulated the flight computer while in an 
idle state prior to vehicle launch. The second scenario 
was to profile the flight after a vehicle launch. The third 
and fourth scenarios (DSEU-Scan and DSEU-Burst) 
involved placing the flight computer into different 
modes corresponding to their DSEU operation. The 
remaining scenarios involved image compression, orbit 
determination, and maneuver planning. 

The Motorola PowerPC 750 can be configured to 
enable access to an L2 cache or to bypass the L2 and go 
directly to memory. In addition, a dynamic power man- 
agement (DPM) feature, based on clock gating, can be 
enabled or disabled. Most of the seven scenarios men- 
tioned above were run in three modes: L2 enabled with 
DPM on, L2 enabled with DPM off, and L2 accesses 
disabled with DPM off. 
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Figure 8. Sample Task Trace Figure 6. Timing Profiles 



4. ’&ace Processing 

The traces as gathered from the testbench formed the 
basis for the load analysis of the Deep Impact code 
done for the Morph project. This analysis was done in 
three steps - a preprocessing step, an interval identifica- 
tion and analysis step, and a power modeling step. The 
last is discussed more fully in [4]. 

4.1. Preprocessing 

The trace logs consisted of literally thousands of 
entries, each giving start time and task number. These 
were first inspected to eliminate recording errors, and 
then preprocessed to remove effects of the task tracing 
hooks by replacing all routines known to be part of the 
testbench system, and not to be found in the expected 
flight software, by idle. Multiple neighboring entries to 
the same task (primarily idle) were then collapsed into 
one, and each remaining trace entry augmented from 
outside information with the task priority (in the current 
state of the flight software, priority assignments are 
static, and range from a highest level of “O”, to a low 
idle level of “255”). A variety of global statistics were 
then computed for each trace, such as total time, tasks 
started per second, total busy and idle time, etc., along 
with statistics on each task, such as the number of times 
it was run, the minimum, maximum, and average exe- 
cution times, and the standard deviation in this time. 

4.2. Interval Analysis 

From each preprocessed trace, sequences of process- 
ing “intervals” were identified, where one interval starts 
at the end of an idle period, after which a string of one 
or more real tasks were executed, and terminated with 
some other idle period. For each such interval, the over- 
all busy and idle periods were computed. Histograms 
were then developed from this data. 

A key statistic taken from each such interval for use 
in the power modeling analysis was the ratio of the total 
interval time to the processing time. This ratio indicates 
by how much a factor the CPU’s performance could be 
slowed down during the processing period to eliminate 
the idle period, and run in a lower power mode. Again, 
this is discussed more fully in [4]. 

5. Application Characterization 

Table 2 summarizes the overall characteristics of 

the scenario name (with “oo”, “of‘, & “ff’ corre- 
each of the 15 scenarios investigated, including: 

Table 2. Overview Scenario Characteristics 

sponding to L2 and DPM on and off), 
the overall power configuration (whether or not the 
L2 cache and/or the DPM facility was active), 
the total time of the simulated mission phase, 
the total number of original traces from the trace 
log, expressed as an average per second, 
the equivalent number of scheduling “events” per 
second after eliminating the non-operational tasks 
and combining idle tasks, 
the average number of intervals per second that 
would be observed in the mission phases, 
the percent of the total scenario time that the 
microprocessor was idle, 
the percent of the time that the processor was busy 
executing code (1 00% minus the prior number). 

Figure 9 plots three of the more important of these - 
characteristics grouped by mission phase, and ordered 
in rough order of load on the CPU (YO Busy). 

A key observation is the broad range of busy times, 
from about 3% to 6O%, for a 20 to 1 variation. This ver- 
ified a key premise for the Morph program as a whole 
that processing loads were highly variable during mis- 
sions, and that knowing that fact, and having control 
over power/performance of the CPU could lead to dra- 
matic overall mission power and energy savings. 

One interesting observation that the data doesn’t 
always play out as one would expect is variations as the 
settings for L2 and DPM are changed. For example, one 
would expect the most busy configuration to be the 
ones where L2 if off, but this is not true for Prelaunch. 
A similar seeming inconsistency can be seen in the 
“Intervals per second,” where variations are strongest 
for the middle phases when the DPM is turned off. 

A more general observation is that for the most part, 
the number of tasks scheduled per second changes dra- 
matically versus mission phase (as expected), but does 
not change much versus configuration. This makes 
sense, since in each phase one would expect the same 
mix of tasks to be executed at the same rates, regardless 
of the loading on the microprocessor. 



a 
scenario, there is an even bigger variation in scheduling 
rates of the different tasks. 

5.2. Execution Breakdown by Task 

Table 3 summarizes the dynamic scheduling charac- 
teristics of the different scenarios. Scenario names are 
listed across the top. The second row labeled “% Busy” 
is just the average percent of time that the CPU is busy 
during that scenario. “Ratio” is the ratio over that sce- 
nario between the highest task scheduling rate and the 
lowest non-zero scheduling rate. Next, “YO of all Tasks” 
is the percent of all the listed tasks that are in fact 
invoked at one time or another during the scenario. 

There is one row below these for each task that is 
part of the operational mix (not all rows shown here). 
The column next to the task name is the percent of all 
the scenarios studied where that task was invoked at 
least once. The numbers inside the table are the average 
number of invocations of that task per second, per sce- 
nario. The column on the right is a ratio between the 
highest and lowest scheduling rate for that task. The 
row labeled “tidleTask” indicates the number of times a 
second the CPU switches into idle. 

Several observations come out of this table. With the 
exception of MICAS, every scenario includes some 
executions of virtually every task, but with a significant 

Table 4 is similar in structure to the previous table, 
but with the main table entries indicating what percent 
each task’s execution takes up out of a second of execu- 
tion of the specified scenario. A blank entry indicates 
that the task is executed for less than 0.1 YO of a second. 
This table thus indicates how a CPU spends its time 
over the average second, during each scenario. The 
“tidleTask” is again the time the CPU is idle. 

The “Ratio” row is the ratio of the largest entry over 
the smallest non-zero entry, as evaluated over each sce- 
nario. The “Ratio” column on the right gives an equiva- 
lent ratio over each task. 

The tasks that had a significant amount of process- 
ing divided into three groups. The first are relatively 
low level processing that is constant across all scenar- 
ios. The second are also relatively low, but much more 
scenario dependent. Finally, are heavy tasks that are 
scenario dependent. 

Table 3. Task scheduling characteristics 
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Figure 9. Characteristics by scenario 
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An interval is a period of time that starts at the end 
of an idle period when a string of tasks are executed 
back to back, followed by another idle period. Figure 
10(a) gives a cumulative distribution of both the pro- 
cessing, idle, and total times of all intervals in the 
Image Processing scenario (both L2 and DPM on). The 
50% point for intervals as a whole is at about 300 
microseconds, while the equivalent 50% point for idle 
periods is at about 70 microseconds. On the other hand, 
more than 50% of all intervals are less than 10 usec. 

Figure 10(b) gives a different view of intervals for 
the same scenario- a histogram of the number of tasks 
in the processing part of an interval. This is an exponen- 
tial drop-off, with a long tail - a significant number of 
intervals have thirty of more tasks present in them. 

Next, Figure 1O(c) gives a scatter diagram where 
each point comes from an interval in the Image Pro- 
cessing scenario, L2 and DPM on. Time is in microce- 
sonds. There are two strong lines that show up here. 
First is a line at 0.125 seconds which must represent the 
8 Hz period. Second is a 45 degree line representing 
intervals with very short idle times. 

Finally, Figure 10(d) gives a scatter plot of time ver- 
sus number of tasks in an interval. A strong horizontal 
line at 1 task indicates very simple intervals whose pro- 
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Figure 10. Interval Statistics 
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Figure 11. Slowdown Ratio vs. Processing Time 
cessing times can vary significantly. Second is a band 
that grows with the processing time. More tasks here 
translates into increased processing time. 

A key part of the power modeling work done on 
Morph was based on slowdowns that could be imposed 
on the processing parts of intervals. Figure 11 gives yet 
another scatter plot on the same scenario, this time with 
the slowdown ratio of total interval time to processing 
time. What is key is the large number of intervals with 
ratios in the tens, hundreds, and thousands. Also appar- 
ent is the diagonal line downward. This probably corre- 
sponds to the horizontal line in the prior chart, where 
interval time was independent of processing time. 

6. Summary and Conclusions 

This paper has discussed a very detailed analysis of 
a complex suite of real-time applications running 
together on a single processor under realistic data. Our 
analysis of the trace data for the Deep Impact applica- 
tion reveals the presence of a large dynamic range of 
the processing activities across the various phases of 
this application. CPU utilizations in-between idle peri- 
ods can vary dramatically; the number of scheduling 
events within each phase as well as the number of inter- 
vals per second within a phase can both vary signifi- 
cantly from one phase to another. Understanding the 
dynamics of these statistics will be invaluable in under- 
standing how best to craft efficient real-time embedded 
processing systems, especially for space applications. 

As a particular example, the project originating this 
work, MORPH, has as its core development of a pro- 
cessor architecture and its associated run-time system 
that is designed to cope with such processing dynamics 
and actually exploit the dynamics to conserve the 
energy required for such processing. Rather than using 
a conventional microarchitecture that always dedicates 
a fixed set of resources for the processing, regardless of 
the dynamics of the application, the MORPH processor 
allocates data path resources such as register file seg- 
ments, issue queue and reorder buffer partitions [7] and 

clusters of function units, register files and cache parti- 
tions on the basis of the dynamic demands of the appli- 
cation [4]. The main idea is to conserve the energy 
requirements of the application by allocating just the 
right amount of resources to meet the instantaneous 
performance needs of the computation. Additionally, 
further energy conservation is achieved by deactivating 
byte-slices (within the data path’s interconnections, 
storage artifacts and function units) that do not contrib- 
ute to the results produced [8]. The MORPH run-time 
system incorporates functions for explicitly controlling 
data placement and its movement within the memory 
hierarchy, for implementing power-aware real-time 
scheduling algorithms (including facilities for tradi- 
tional voltage and frequency scaling) and for selective 
activation and deactivation of partitions of an inher- 
ently low-power cache system. Our planned future 
activities include the incorporation of these primitives 
into VxWorks and an evaluation of the efficacy of our 
solutions using the testbed described in this paper. 
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