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Abstract- To command a rover to go to a location of 
scientific interest on a remote planet, the rover must be 
capable of reliably tracking the target designated by the 
scientist from ten or more meters away. The rover must 
maintain lock on the target while traversing rough terrain 
and avoiding obstacles without the need for communication 
with Earth. Among the challenges of tracking targets from a 
rover are the large changes in the appearance and shape of 
the selected target as the rover approaches it, the limited 
frame rate at which images can be acquired and processed, 
and the sudden changes in camera pointing as the rover 
goes over rocky terrain. We have investigated various 
techniques for combining 2D and 3D information in order 
to increase the reliability of visually tracking targets under 
Mars like conditions. We will present the various 
approaches that we have examined on both simulated data 
and tested onboard the Rocky 8 rover in the JPL Mars Yard 
and the K9 rover in the ARC MarsScape. These techniques 
include results for 2D trackers, ICP, visual odometry, and 
2D/3D trackers. 
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1. INTRODUCTION 
the Mars Pathfinder mission, the Sojourner rover used 
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about 7 meters to a target designated by the scientist and 
then place an instrument on the target. The Mars 
Exploration Rovers, Spirit and Opportunity, which will land 
early in 2004, have a baseline of 3 sols for a -10 m target 
approach. Future rovers can maximize science retum by 
reducing the number of sols required to approach a 
designated target, place an instrument, and collect science 
data. Using fewer sols requires longer traverses between 
course corrections, which, in turn, requires more accurate 
navigation. Dead reckoned navigation over rock-strewn 
terrain can produce navigation errors above the allowable 
15%. We have explored the use of visual tracking 
techniques that combine 2D and 3D information to maintain 
lock on a designated target point as the rover approaches it. 
With reliable target tracking, a rover will be able to achieve 
single-sol instrument placement from 10 to 15 rover lengths 
away on Mars-like terrain. 

The scenario we are exploring is as follows (Figure 1). A 
scientist designates a target in the imagery downloaded 
during the previous sol. The designated target location 
(either the image location or the corresponding 3D location 
computed from stereo processing) is uploaded to the rover. 
Once the rover receives the designated target, it will 
autonomously drive keeping the target within the rover's 
field-of-view (FOV) until the target is within the workspace 
of one of its arms. The rover will then deploy its arm and 
place the desired instrument on the target for science data 
acquisition and download to Earth. 

Reliable target tracking from on-board rover platforms is 
particularly challenging for the following reasons: 

(i) The visual tracker needs to operate in parallel with a 
navigator for the rover to safely avoid obstacles when 

an average of 5.2 Martian days (sols) to drive an average of 
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(ii) 

(iii) 

(iv) 

arget 

time = t l  
(a) 

Tarnpi Trackinn 

Figure 1 : Scenario of rover tracking a designated target 

traversing rough terrain. Figure 2 shows Martian 
terrain that the rover must be able to negiotiate. 
A rover experiences sudden changes in its tilt as a 
result of a wheel dropping off a rock or dipping into 

requirements, so image frames may be taken quite far 
apart in time. 

Background 
a gully, causing the target to leave the camera FOV 
The target changes appearance both in images as well 
as in the reconstructed 3D model after it is recovered. 
High-frame-rate image-acquisition and processing 
are not feasible due to limited computational and 
power resources 
The articulated padtilt camera system has to meet 
multiple mission objectives and cannot be fully 
dedicated to meeting the visual tracking 

There has been considerable amount of research dedicated 
to studying the problem of feature tracking. However, most 
trackers require very small and/or well-estimated motion 
between consecutive frames. Both assumptions do not hold 
for a flight rover operating across rough terrain. Researchers 
at NASA and participating universities have been 
investigating the adaptations of the well-studied tracking 
techniques to the problem of tracking from a rover platform. 

Figure 2: Sample terrain from Mars missions (a) and (b), and the JPL Mars Yard (c) 
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Early work at ARC has investigated the use of binary 
correlation to register individual features across multiple 
frames. This binary correlator matches the sign of pseudo 
Difference of Gaussian (DOG) of filtered imagery. Such 
pre-filtering has proven very stable in the presence of 
lighting variations and camera noise. Binary sign 
correlation was also implemented using logical operation 
rather than arithmetic calculations, thus increasing the speed 
while reducing the memory requirements for the tracker. 
The instruction level parallelism of this correlative approach 
makes it amenable to the limited processing requirements of 
near-term rover missions. This technology was 
demonstrated on the Marsokhod rover for navigating to a 
desired location [24]. However, as the vehicle approaches 
the target, the target’s image size grows dramatically 
between updates, and a correlation search on the intensity 
image tends to fail. 

Another development in target tracking for rover platforms 
occurred at JPL. One algorithm, known as visual odometry, 
uses an interest operator to track intensity-based image 
features [11][18]. By supplying an initial estimate of the 
rover motion, this tracking system computes a refined 
estimate of the rover position and orientation by matching 
these features in consecutive images. We will present a 
discussion on how this algorithm is used in our tracker and 
what are some o f the current limitations. Another algorithm 
developed at JPL tracked targets in the three-dimensional 
elevation map that is generated from stereo imagery [14]. 
This algorithm was develop to enable the autonomous 
acquisition targets selected from several meters away. 
However, such changes to the cameras’ FOV caused the 
tracker to lose the designated target. 

Another effort at JPL [7] used a homography-based tracking 
kemel to track designated features. Results for short 
traverses were promising, Building on these experiences 
and looking into combining 2D and 3D information to 
enhance tracking reliability and address the limitations 
previously encountered, we designed our algorithm to be 
robust to large changes in feature geometry and photometry 
between frames and to handle tracking from a mast mounted 
cameras. In this paper, we will first present some of the 
approaches we examined and why they failed to produce the 
reliability that we were seeking. We will later show how 
these initial approaches converge to the current solution 
whose results are very encouraging. 

2. USING ICP FOR ROVER TRACKING 
./ We started by examin -d ow 3D information generated 

from stereo processing can be used to enhance the reliability 
of the 2D target trackers. We have explored a number of 
approaches for using iterative closest point (ICP) algorithms 
to enhance the reliability of 2D tracking. 

Background 

The ICP algorithm [2] recovers the pose change between 
two sets of unmatched 3D points. In its purest form, it 
consists of a loop with a two-step kemel. The first step pairs 
points from one set with their nearest neighbors in the other 
set. The second step determines the transform to apply to 
the points of one set to minimize the distance between the 
nearest neighbors. With one set thus transformed, the 
original point pairings may no longer accurately reflect 
nearest neighbor points. The loop continues to 
convergence, which can be defined as, for instance, the 
detected transform being too small, the average distance 
between nearest neighbors being too small, or the set of 
nearest neighbors not changing. 

Most 3D tracking algorithms follow the two steps of the 
ICP kemel - they find corresponding points in two scenes 
and then determine the transform that accounts for the 
motion of the points. The primary difference between the 
algorithms seems to be in the approach to finding 
corresponding points. 

The ICP approach is suited for point cloud inputs, where it 
is not necessarily possible to identify “collocated” pixels, or 
where “gradients” between pixels may not be defined. 
However, there are other methods for making point 
correspondences. An example is RANdom SAmpling 
Consensus (RANSAC), which tests a number of arbitrary 
pairings of points, finds the best transform to explain each, 
and keeps the transform that best aligns the two clouds 
overall. 

In this work, we considered two approaches that used the 
ICP algorithm to recover change in rover pose (position and 
orientation). The first applies the ICP algorithm to full 
frames. The second applies ICP to select matches 
surrounding rock features in the point clouds. In both cases, 
the algorithm uses a full 6D model of the change in the 
camerahover pose. Ideally, one would expect a more 
accurate result of either of these approaches as compared to 
an affine or homography-based feature matcher because this 
algorithm models the full motion of the camera relative to 
the target (6D) and not an approximate one as in the latter 
case. 

ICP on Entire Frames 

First, we evaluated the use of full frame ICP between 
consecutive point clouds generated from stereo camera 
images mounted on the rover. 

We have tested this algorithm on both synthetic images of 
rocks with known and accurate depth maps generated using 
a ray tracer as well as on images generated from the rover 
cameras. We found that ICP converged well when the 
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motion between scenes had a good initial estimate that 
major features locked on properly in the first iteration. 
However, when the algorithm was tested with rover-based 
images and with estimates of rover motion, the results were 
not as promising as those of synthetic images. There were 
several problems that were encountered trying to match 
terrain point clouds from real images. 

The first problem that we encountered with full frame ICP 
was the convergence of the algorithm on the wrong local 
minima. ICP is essentially a gradient descent algorithm, 
and thus it must begin operating in the correct valley of an 
error surface. Poor initial estimates of the rover motion 
make it challenging for ICP to converge to the correct 
minimum. 

Rock 
\ c c  

ICP converges on the 
wrongclocal minima 

Figure 3: Sources of ICP false matches 

To illustrate this point, consider the example of two, 
differently shaped, squat rocks sitting on a planar patch 
shown in Figure 3. Suppose two point clouds representing 
the scene are nearly aligned, so that points on each rock in 
the first cloud have nearest neighbors on the same rock in 
the second cloud. Then ICP will pull the neighbors 
together, improving the alignment of the two scenes. Now 
rotate the second scene 180° so that the two rocks are 
falsely matched. Points on each rock now have nearest 
neighbors on the incorrect rock, but ICP will try to align to 
them, converging to an exactly incorrect result (see above). 
Now, rotate the second patch 90" about the same axis so 
that the rocks in each cloud sit above a planar part of the 
other cloud. ICP will minimize the distance between 
nearest neighbors by lowering the first cloud (to move rock 
points toward the second cloud's plane) and raising it (to 
move plane points toward the second cloud's rocks), giving 
no net change. ICP will converge without modifying the 
initial pose. Finally, separate the two clouds so that they do 
not overlap. Now ICP may find that all points in one cloud 
have the same nearest neighbor in the second cloud - the 
single point closest to the first cloud. ICP will move the 
centroid of the first cloud onto that single nearest neighbor, 
and apply an arbitrary rotation, potentially producing any of 
the situations described above. In summary, ICP must 
begin with a reasonable estimate to converge properly. It 
follows that ICP must supplement another tracking method, 

such as 2D tracking or visual odometry. 

The second problem stemmed from stereo noise errors. This 
error was seen when both synthetic and rover-based images 
were processed with the stereo algorithm to compute the 3D 
point clouds. Even with a good initial estimate of the 
motion, the algorithm tends to diverge from the correct 
solution. 

ICP on Select Points 

To address the first problem of having most of the points in 
the cloud belong to the flat portion of the terrain, we 
examined using only a mesh surrounding the designated 
feature. Using a small patch of interest eliminates 3D points 
from the terrain flatness which can negatively influence ICP 
and force it into a local minima. Using an initial estimate of 
rover pose computed by integrating odometry and IMU 
data, this mesh will be matched against the new point cloud 
generated at the next step. By matching the patch in the new 
point cloud, the 6D (translation and rotation) rigid body 
transformation that describes the rover motion can be 
recovered. Knowing the accurate motion of the rover (or 
camera) will enable the rover to keep 3D knowledge of the 
designated point. 

Once again, the results of this experiment on real images 
were not as promising. Because of the limited size of the 
patch surrounding the feature, and because of an imprecise 
initial pose estimate, rotation can bleed into translation and 
vice versa in the search for the minima. Even when we 
extended this approach to use multiple meshes surrounding 
rock features-which provides a lever arm to help the ICP 
distinguish rotation from translation-and combining them 
into a single mesh to run ICP, the results were sensitive to 
the quality of stereo. 

Conclusion 

Initially we considered using the Iterative Closest Point 
matching algorithm (ICP) to aid the 2D/3D tracker to 
improve the tracking accuracy. Stereo is sufficiently noisy 
that it produces entire blobs of data that appear in only one 
image of a pair. These areas must be rejected as outliers 
before ICP can converge. However, when the images are 
not initially well-aligned, these outliers look like any other 
poorly aligned area. With no easy way to eliminate the 
outliers, ICP will likely not converge to any credible answer 
Because ICP requires both good initial estimate and good 
stereo data with low noise, only select points with high 
stereo confidence (Le. small covariances) can be used 
effectively. This degenerates to an algorithm that tracks 
sparse 3D points that have high stereo confidence, and use 
them along with the rigid body assumption to eliminate 
drifting points and track an obscured point. This algorithm 
is known as visual odometry [ 1 1][ 181. 
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3. VISUAL ODOMETRY 
The JPL Machine Vision group currently uses an 
implementation of visual odometry based on Matthies’ 
dissertation [ 1 11, with several subsequent improvements to 
speed and accuracy. This algorithm is the current baseline 
in CLARAty [ 151. CLARAty is an architecture for reusable 
robotic software which integrates a number of robotics and 
vision technologies into its framework. The current 
implementation is able to recover translation of the imager 
with about 2% error of the total traversed distance [ 181, and 
rotation with about 3% error for the first 7 m. 

The current visual odometry implementation works as 
follows. Start with a pair of images from a pair of cameras 
with known relative geometry4  stereo head. Choose 
distinctive features in, say, the left image, stereo-match 
them into the right image, and triangulate to get the 3D 
positions of the features relative to the cameras. Move the 
camera pair and acquire a new image pair. Track the 
features from the old left image into the new left image. 
Stereo match the features from there into the new right 
image, and triangulate to find the 3D feature positions 
relative to the new imager locations. Compare 3D distances 
between features in the first frame with the distances 
between corresponding features in the new frame, and 
eliminate features that move with respect to their neighbors. 
Using a rigid world assumption, use a maximum likelihood 

estimator to determine the 6D pose change of the imager 
that best accounts for the apparent 3D motion of the features 
v11. 

Using visual odometry alone results in too large errors when 
tracking a target that is 10 meters away. The error of visual 
odometry is cumulative and will lead to larger errors in 
tracking accuracy compared to algorithms that leverage 
information about the designated target. Hence we use the 
visual odometry as an initial estimate of the rover change in 

Figure 4: Surface normals on a sample terrain 

/ / 
pose to seed a tracker that focus on the designated target. 

Filtering of non-flat features 

While the visual odometry algorithm produces promising 
results for rover pose estimation, this algorithm loses track 
of the target if the change in rover pose is large between 
consecutive frames. This occurs when a rover falls off a 
rock during a traverse. At is core, visual odometry using a 
homography transform to track comer feature in 
consecutive frames. The tracker assumes that the comer is 
on a flat surface and not on an occluding boundary. To 
eliminate such outliers and to improve performance, we 
tested the visual odometry with a surface normal filter that 
ignores features that are not flat. 

/ 

Conclusion 

It appears that visual odometry does not benefit noticeably 
from using normal filtering. This is based on the 
observation that normal filtering eliminates poor features, 
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Figure 5: Overall Visual Tracker System Architecture 

but reducing the number of features reduces the probability 
that visual odometry will succeed. Any improvement in 
quality of tracking is masked by the errors that accumulate 
on frames where visual odometry fails. 

We came to this conclusion by testing visual odometry in 
conjunction with several forms of normal filtering (Table 
1). We ran this algorithm on imagery acquired from the 
hazard cameras (body cameras). We collected data for four 
cases: 

1. Baseline is CLARAty visual odometry. We acquired 
200 features and typically lost around 80 during 
tracking. 

2. 85%. Generated a depth map of the scene using JPL 
stereo, converted to a normal map, and recorded the 
confidence associated with each normal. Eliminated 
any features with normal confidence less than 85%, as 
these represent non-flat features that do not meet 
assumptions in visual odometry’s homography 
transform. That typically eliminated about 10 of the 
200 features. 

3. Best-15. Acquired 200 features, and then chose the 
15 with the highest normal “confidence.” These 
should be the flattest features, most suitable for 
homography transform, and thus most likely to track 
properly in visual odometry. In general, few of these 
features were lost in tracking. 

4. Best-30. Analogous to Best-15, but with 30 features. 

We recorded visual odometry after approximately 3 m, 5 m, 
and 10 m of traverse. The table presents recovered 
translation in meters and rotation vector in radians. The 
results are tabulated below. 

An important feature of the results above is that they depend 
significantly on the frequency with which visual odometry 
fails. When visual odometry fails to track at least 8 
features, it reports zero for zx, xr, and yr. This happened in 
the frame at 5 m for the best-15 case. The baseline and 
85% cases had 4 frames that failed to track. The resulting 
error in zr, xr, and yr is the likely cause of the poor recovery 
in those dimensions. The best-15 case had 26 failures, and 
best-30 had 13 failures. The increasing number of failures 
is clearly reflected in the reported error. 

So, to restate the conclusion, reducing the number of 
features, even the less accurate features, by normal filtering 
reduces the probability of successfblly tracking 8 features, 
which increases the probability of a jump in accumulated 
visual odometry error. It is safer to use more, less-good 
features. 

4. THE 2D/3D VISUAL TRACKER 
Building from these results, we developed a visual tracker 
that controls an articulated mast to keep a designated feature 
in the camera FOV while driving towards the target. Figure 
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5 shows the visual tracker system architecture. Initially, a 
scientist selects a point in one of the stereo images acquired 
from the mast (top left). The stereo triangulation algorithm 
computes a 3D location for the target. As the rover moves, 
its body-mounted cameras feed images to a visual odometry 
algorithm, which tracks 2D comer features and computes 
their old and new 3D locations. The algorithm rejects points 
whose 3D motion is inconsistent with a rigid world 
constraint, and then computes the apparent change in rover 
pose. Using this estimated change in rover pose, the 3D 
position of the target feature, and the mast kinematics 
model, we compute the pan and tilt angles of the mast to 
keep the target in the center of the camera's view, 
minimizing the area over which the 2D tracker must 
operate. If the motion between consecutive frames is still 
large (Le., 3D tracking was unsuccessful), the tracker 
applies an adaptive view-based matching technique (next 
section) to the new image. This technique uses correlation- 
based template matching where it scales the feature template 
based on the depth ratio between the original template and 
pixels in the new image. This is repeated over the entire 
search window and the best correlation results indicate the 
appropriate match. 

The simplest method of selecting and approaching a target 
for instrument placement is to acquire a stereo image pair 
from the mast, compute the 3D location of the target, and 
then drive to the target using rover pose estimation. 
Unfortunately, even very small errors in stereo ranging or 
rover pose estimation translate to a very large error in the 
prediction of the target location after a 10 m traverse. The 
large initial distance makes stereo range accuracy sensitive 
(a 0.2 pixel disparity error of our 4 mm 640x480 cameras 
with a 9.9 pm pixel size and 19 cm baseline corresponds to 
a 25.4 cm range error) and good pose estimation prone to 
accumulated error (1% error would accumulate to 10 cm 
over 10 m). After approaching 9 m toward a target 10 m 
away from a mast 1 m high, the target error is 
approximately equal to the range error. So if the range (or 
pose estimation) error is 10 cm, the target error is 
approximately 10 cm as well. 

Name 
Navigation 
Panoramic 
Hazard 

Tracking the target to even within several pixels after a 10 
m traverse improves the estimated target position 
considerably over even good stereo and pose estimation. 
Using the 4 mm cameras, tracking can achieve better than 
2.5 cm accuracy: a single pixel at 10 m corresponds to 2.5 
cm; at 1 m 2.5 cm corresponds to 10 pixels; in general we 
only see several pixels error after tracking over 3 0 4 0  
iterations. Even more accurate tracking can be done with 
the 16 mm cameras. However, because at 10 m, a 1.7 
degree pointing error corresponds to 100 pixels error 
(compared to a 9.4 degree pointing error for the 4mm 
cameras), the mast must be pointed much more accurately to 
maintain a fix on the target. Even with a large search 
window, the mast must be pointed to within several degrees 
of accuracy. 

00 Resdmtbm (jam) 
Mast 19cm 4mm 60° 640x480 9.9 
Mast 23 cm 16" 17O 1024x768 4.65 
Body 8.6cm 2 . 8 m  90° 640x480 9.9 

Rover Pose Estimation 

In order to achieve the accuracy needed to point the narrow 
(16 mm) FOV cameras, we use an IMU to determine the 
vehicle's roll and pitch and visual odometry [18] to 
determine the vehicle's yaw and 3D position. Although 
visual odometry is prone to accumulated error, we are only 
interested in the relative accuracy, which should be well 
within 1' pointing and 1% of the distance traveled (25 cm, 
resulting in 0.25 cm position error). 

2 0  Tracking 

Figure 6: The Rocky 8 rover with the mast 
unstowed 

The tracking algorithm uses (only partially optimized) 
normalized cross correlation [9] between each frame to seed 
an affine matcher [lo] that maintains a single original 
template and simply updates its affine parameters on each 
frame. The fast cross-correlation matcher allows for very 
large motions of the feature window between frames while 
the affine matcher provides accurate localization and 
prevents accumulated error (drift) by using a single key 
frame. Depending on the motion expected, the affine 
matcher can optimize on the feature translation and either 
all affine parameters, only scale parameters, or only in- 

Table 2: Camera Configuration for Rocky 8 
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Figure 7: Data from a 10 meter run tracking with both Pan and Nav cameras 



Experimental Results 

For our experiments we used the Rocky 8 Mars rover 
prototype (Figure 6), which has an articulated mast with two 
stereo camera pairs: navigation and panoramic stereo pairs 
(Table 2). These are used for the visual tracker. The wide 
FOV body mounted cameras are used for visual odometry. 
The nominal experiment used to validate the tracking - ” 

In this example, the rover motion commands are simulated 
to mimick the onboard navigation algorithm. These 
commands consisted of arcs ranging from 1-3m with a 
heading change of up to 45 degrees. Images from two 
stereo pairs (4 mm and 16 mm camera pairs) were taken 
every 25cm from a mast raised Im off the rover 
(approximately 1.5 m off the ground) and pointed at the 
target using the estimated rover pose and mast kinematics. 
Additionally, images from the front body cameras (hazard 
cameras) where taken and used for visual odometry 
algorithm. Accelerometers from an onboard IMU were 
used to determine pitch and roll of the vehicle (while 
stopped) every time images were taken. The rover was 
driven over the most severe conditions it was designed to 
traverse (over rocks about 30 cm high), resulting in 
significant wheel slip and changes in roll and pitch. 

template is being shifted over the 3D surface of the terrain 
in order to register a match. 

Preliminary results of this algorithm showed that targets 
were tracked through an 8 meter traverse under realistic 
Mars-like conditions. Several runs were completed and 
designated targets were successhlly tracked. The 
implementation of the adaptive view-based matching is 
complete but being integrated with the current tracker to 
compensate for larger changes in motion. 

5. ADAPTIVE VIEW-BASED MATCHING 
When the rover drops off a rock, the mast camera, 
especially the narrower FOV lenses experience large and 
sudden changes. Under these conditions, even the hazard 
cameras experience enough change that causes the visual 
odometry algorithm to fail. In the absence of a good initial 
estimate, the tracker has to search a larger window in order 
to recover the correct pointing direction and do a finer 
search on the target using the narrower FOV cameras. 

Correlating a template over an image may be an effective 
way to recover a feature being tracked if the feature has a 
unique appearance and its appearance has not changed 
significantly. However, correlation can be improved by 
using a template transformed with a scale and orientation 
adaptively selected based on the 3D information. This 
approach uses the notion introduced by Olson [17], and is 
similar to one utilized by Morency [13]. Instead of 
correlating a fixed template over a new image, the template 
is reprojected according to the depth and surface normal 
information at each point in the correlation. Essentially, the 

Figure 8 (left) shows images taken in sequence after the 
rover has traversed some distance and driven its right side 
over a rock. The feature template representing the selected 
target is scaled at every pixel in the new image based on the 
depth information from image (b) at that pixel. Correlation 
results are shown on the right hand side of Figure 8, where 
the top image shows the results without appropriate depth 
scaling and the bottom image with the proper depth scaling. 
The latter image shows a region with a very dark red sport 
indicating the highest correlation results and the proper 
match for the original feature template. 

To reduce computational cost, the template is assumed to be 
planar, in which case a planar transformation can be applied 
to the template at each correlation point. Without this 
planar assumption, a mesh will be needed for the feature, 
which would then be transformed in 3D based on 
information acquired from stereo processing. 

Because the adaptive technique relies mainly on relative 
depths, it should not be particularly sensitive to the stereo 
depth accuracy (as well as camera model accuracy). 
Furthermore, because the adaptive technique relies on the 
ratio of depths, it should be less sensitive to depth errors at 
far distances typical of stereo matching [26]. In addition to 
facilitating the recovery of a lost target, we will use an 
adaptive scale method to track a template over a longer 
distance and consequently reduce the accumulation of drift 
when tracking. 

While the adaptive correlation technique is more expensive 
than a conventional one, it can be done at a low resolution 
to simply find an initial match, and then refined at higher 
resolution with a more accurate matching technique that 
requires a good initial guess (such as an affine matcher) 
[101[201. 

The approach still cannot account for one degree of 
freedom: the rotation around the optical axis (camera roll). 
However, the rotation will be recovered from the IMU’s 
accelerometers, which estimate the vehicle’s tilt. This 
information will seed an algorithm that will match far-field 
features to refine the vehicle roll estimate. With stereo data, 
features that are far away are easy to detect, and matching is 
easier because features in consecutive images will be 
approximately the same scale. 

Initially off-line tests of scenarios where sudden change in 
FOV occurs yielded very promising results using depth 
information only to scale the template. Future work will 
integrate this with the visual tracker system. 
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n Feature Template (FT) 
(10x10) 

Original FT matched over image (b) 
No adaptive view-based matching used 
No distinct peak (red spot) 

Ip UI ~4 a rm IS u) w) Depth=Pm Repeat for every pixel in image (b) 

Figure 8:  An example of adaptive view-based matching with correlation results shown on the right 

6. SURFACE NORMALS FOR POSE ESTIMATION 
The computing of surface normals from 3D point clouds 
that we visited earlier can be used to recover rover pose. 
Surface norma's for comer that are tracked can be 

Choose the features not on most planar surfaces 
Track these features using afine matching 
Compute an estimate of the delta pose from surface 
normals 

Given that the surface normals are more stable that the 
CX3n~ecutive steps to 

except that is lEeS the surface 

the change in 
OdometV 
instead Of 

feature locations, this algorithm will yield a more robust and 
accurate estimate of the pose change. Locating flat regions 
in the 3D map make good candidate targets for instrument 

Pose. This approach is similar to the 

the 3D locations of the features. The steps for this algorithm 
are as follows: 

placement and drilling operations. 

Figure 4 shows a 3D textured mapped image and its densely Extract features 
Fit planar surfaces to features using stereo depths s 
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calculated surface normals from stereo data. To reduce the 
amount of computation, we restrict the surface fitting to the 
extracted comer features of the images. This will retain the 
best planar fits features and eliminate points that will be 
hard to track. Altematively, one can reverse the order of 
this operation-one can extract the best planar patches first, 
and then look for the most textured planes. However, the 
first approach is computationally more efficient. 

Affine tracking with gain and offset 

Similar to the visual odometry and the tracker algorithms, 
we use an affine tracker [ 10][20] to track features between 
two consecutive frames. Calculating affine distortions may 
reduce or eliminate the effects of geometric distortions, but 
changes in surface orientations also introduce photometric 
variations between the same regions in two images. These 
variations are often modeled in terms of gain and offset. 
For affine matchers-or their earlier predecessors such as 
KLT [IO] that use intensity derivative-ffset values do 
not pose a problem. But the effects of the gain still remain. 
Figure 3 shows the resulting drift caused in tracking as a 
function of variations in gain between a stereo pair from 0.5 

4 

Figure 9: Variations in gain between image regions 
produce drift on the position of the minimumi.e. the best 
match 

to 1.5'. 
To overcome this problem, which is common in outdoor 
imagery, we incorporated estimating gain and offset along 
with the 6D affine parameters. The affine kemel can be 
used with different modes: x,y matcher, x,y, rotation 
matcher, 6D affine matcher, and 8D matcher with 
photometric balancing. 

Pose Estimution from Surface Normals 

Unlike the visual odometry algorithm described earlier 
which uses the 3D location of points to recover change in 

In reality gain also has a secondary effects involving the deformation of 
This vertical shift was the correlation surface and its shifts upward. 

removed since it has no effect in the translational drift. 

rover pose, this algorithm uses the surface normal 
information at the feature points. Hom [5][6] showed a 
closed form solution to the change in camera pose from 
surface normals. 

Olson [17] showed that the largest contributor to errors in 
visual odometry and rover pose drift is errors in the rotation 
estimation. Motivated by this fact, we decided to examine 
the calculated surface normals as well as the position of the 
tracked points to get a better estimation of rover's pose. The 
rationale for. this approach is as follows. Outlier detection 
among 3D points in the regular visual odometry can be to 
look at distance among 3D points which violate a rigid 
world assumption. Those with large relative displacements 
are outliers, But h f t s  of points collectively due to 
systematic errors may still occur. 

On the other hand, surfaces and lines-being extended 
features-will neither suffer from such limitations, nor have 
smaller absolute errors than simple point tracking 
[Esfandiar ~ nccd to justify]. Additionally, to calculate the 
relative orientation of two frames only requires two surface 
normals. Calculating translation however still requires three 
planar patches. 

One can derive this formulation as follows. Assume we 
have two planes at time t that have normals u and v. At time 
t+l, these normals change orientation resulting in u' and v'. 
If the rotation between time steps is given R, we then have 
u ' =  Ru and v' = Rv. But we can use the cross products w = 
u x v and w' = u' x v' to solve for the relative orientation 
matrix R. Furthermore we like to calculate a rotation matrix 
R that maximizes the following hc t ion :  

f ( ~ )  = u i T  RU + v i T  RV+ W I ~ R W  

subject to R'R being the identity matrix I. The superscript 
T denotes the matrix transpose. 

An obvious solution, often used in factorization based 
structure from motion, is to solve for the nine elements of 
the R matrix using least squares and then enforce the 
orthonormality of the matrix by using the QR factorization 
on the result to find the best orthonormal estimate for R. 
While extremely fast this approach is susceptible to 
degradation with noise. 

Using a Lagrange multiplier approach instead, we can show 
that the above optimization problem can be written as: 

d 
dR 

G(R) = -(f(R) - 0.5 Trace(MRTR)) = 0 

where the M is a symmetric matrix of Lagrange multipliers 
and -0.5 is a constant used for convenience. Using the 
formulas Trace(A B) = Trace (BT AT) and 
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d/dA(Trace(AB)) = B, we further calculate G (R) to be: 

which leads to: 

or altematively: 
M = K R  

R = K-‘M 

With the K matrix being a known 3x3 matrix that can be 
summarized as: 

f T  K = C nini 
Surface Nu” 

where ni and n‘i are: surface normals at t and t+l 
respectively. Noting that M is symmetric and that R’ R is 
identity, where: 

R ~ R  = I  = MK-’(K-’)~M 

which leads to 

that is M is the symmetric square root of the K KT. If we 
write K in terms of its SVD decomposition U C V’, with D 
the diagonal matrix of non-negative singular values, then 

M’ = K K ~  

M = U C U T  

Using the above M in H = K-’ M we get R = (U C VT)-’ U 
C UT which leads to the final solution: 

enhancements in the accuracy of the tracked target because 
of the absence of a good initial estimate and the presence of 
noisy stereo data at 10 m range. Altematively, the use of 
visual odometry to seed the designated target tracker yields 
good results. The 2D/3D target tracker used a normalized 
cross correlation between consecutive frames and an affine 
refinement of the new feature location relative to the 
original designated target at every step. The use of an 
adaptive view-based matching technique will increase 
robustness by recoverin failures in obtaining an 
estimate of the motio P from the visual odometry. This 
occurs when rover falls oEa rock. Tracking with 4 mm 
navigation camera is robust but not accurate enough to lead 
to 1 cm error at the end of a 10 m traverse. Tracknig the 
target with 4 mm camera and seeding this formation to the 
mast to point the 16 mm cameras for a high accuracy 
tracking produces the best overall results. So the 2D/3D 
tracker achieve desired accuracy by tracking with two 
cameras with different lenses. The use of surface normals to 
filter out features that feed the visual odometry did not 
produce any improved results. However, computing the, 
change in rover pose from surface normals holds somq \, 
promise. The reported results were from tests conducPoli 
the Rocky 8 rover at JPL and the K9 rover at ARC. 

__.“ 
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