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SUMMARY & CONCLUSIONS

In planning a complex system’s development there
can be many options to improve its reliability. Typically
their sum total cost exceeds the budget available, so it is
necessary to select judiciously from among them.
Reliability models can be employed to calculate the cost
and reliability implications of a candidate selection.
However, there will typically be many such candidate
selections, so we employ heuristic search techniques to
explore reliability cost-benefit spaces, and visualization
to present the results of these machine-conducted
searches back to the expert designers to assist them in
their decision making. This helps them understand (1)
the overall cost-benefit trade space (how much reliability
can be attained for a given level of expenditure, and how
much additional reliability can be had for a modest
increase in expenditure), and (2) the contribution of
individual options (when an individual option (e.g., a
test) contributes cost-effectively to the overall
reliability). The net result is that expert human designers
can make cost and benefit informed decisions on
attainment of reliability. This approach is demonstrated
on data drawn from planning the developments of
advanced technologies for spacecraft.

1. INTRODUCTION

The context in which we work is the design and
development of NASA’s deep space probes. High
reliability is required of these complex systems.
Furthermore, high reliability is required of the
development of those systems — that it be accomplished
within budget, that it be completed within schedule (the
spacecraft must be ready for launch within a certain time
period when celestial mechanics allow for a time and
energy efficient route to destination), and that the
resulting system adhere to strict resource limitations
(mass, volume, power, etc). Finally, NASA is
continually pursuing new scientific objectives, for
which new mission concepts are devised (e.g., sample-
return missions), new technologies are developed (e.g.,
autonomous  spacecraft control), and existing
technologies are employed in novel settings (e.g.,

electronics subject to the harsh temperature cycles of
planetary environments).

In response to these needs, at JPL and NASA a
process has been developed to perform life cycle risk
management [1]. One of the key aims of this process is
to utilize the experience and insight of spacecraft experts
drawn from the full range of discipline areas (e.g.,
science, navigation, propulsion, software, materials,
communications). The complexity of the systems
involved and the pressures on their development render
purely manual planning and decision making
problematic. Our risk management process therefore
utilizes automation to assist those experts in pooling
their knowledge, in deriving information from their
pooled knowledge (via automated calculation and
search), and in decision-making based on the sum total
of that knowledge. This process is not, however,
automatic. There is continued need for interchange
between the experts and the automation, so that they can
understand the results of that automation, and use those
results to guide them (not replace them) in their
decision-making. Visualization plays a key role in
effective communication of information to those expert
users.

The focus of this paper is on the visualization we use
to convey automated search results, and their
implications, to expert users. We employ heuristic
search to help locate cost-effective solutions within a
(large) space of reliability options. The large search
space arises from the many options available to attain
reliability — design options, materials options, test and
analysis options, etc. At the heart of our process is a
reliability model we use to calculate, for a given
selection of options, the cost and benefit of that
selection. We show how appropriate visualization of the
search results is able to convey both the overall nature of
the cost-benefit trade-space, and the contributions of
individual reliability options. The net result is help to the
expert users in making cost-benefit informed decisions
concerning the reliability of the spacecraft systems
whose development they are planning.

As we have stated, our work takes place in the
context of spacecraft development. Nevertheless, we feel
there are numerous terrestrial applications to which the
same approach would apply. Many applications have



high reliability needs and have budget, time and resource
constraints on their development. The reliability model
that underpins our work is quite general in nature (it
emphasizes spanning the breadth of concerns rather than
the intricate details of the systems themselves).
Moreover, whatever reliability model is used our method
requires only that it be capable of calculating the cost
and benefit of a candidate solution. Hence we are
optimistic that our use of heuristic search for cost-
effective reliability solutions,. coupled with cogent
visualization to report the results of that search, has
broad applicability.

The remainder of this paper is structured as follows:

In section 2 we briefly summarize our reliability
model. In section 3 we discuss the use of heuristic search
to expose the cost-benefit reliability option space for a
problem expressed in our reliability model, and show the
use of visualization to convey the overall nature of the
space. In section 4 we show how further visualization is
able to reveal the contribution of individual reliability
options. Finally, in section 5 we discuss status and
mention some related work.

2. RELIABILITY MODEL

In this section we briefly summarize our reliability
model, and identify the characteristics of the model
upon which the rest of our approach relies. We have
published widely on the model — for a relatively
complete account, the interested reader is referred to [2].

2.1 Summary of Reliability Model and its Applications

Stated in the most general terms possible, the heart
of our reliability model is very straightforward: for
whatever system is being modeled, we capture within the
model (1) the characteristics required of the system and
of its development, (2) the key obstacles that, were they
to arise, would impede attainment of those
characteristics, and (3) the options available for
preventing, removing or working around those obstacles.
We also capture within the model quantitative values for
how much each obstacle (were it to arise) would impede
attainment of the characteristics, and for how much each
option (were it chosen) would effectively reduce each
obstacle. Finally, we capture the cost of each option, and
the relative value of each characteristic.

When applied to spacecraft development, the
characteristics required are often termed “objectives” or
“requirements”, the obstacles are termed “risks” or
“failure modes”, and the options “mitigations”. Most of
our applications have been to individual technologies
intended for use on space missions, for which: (1) the
objectives encompass the science objectives driving the
use of the technology (e.g., data accuracy and volume),

environmental constraints on resources available to the
technology (e.g., RAM, power), and environmental
constraints on the extent to which the technology can
impact its environment (e.g., electromagnetic fields), (2)
the risks encompass potential development problems
(inability to construct, test, repair, operate and maintain
the system) as well as the multitude of ways the
operating system can fail to meet requirements, and (3)
the mitigations encompass preventative measures that
can be employed to reduce the likelihood of risks
occurring (e.g., coding standards, training, use of
qualified parts), to detect the presence of risks prior to
fielding and use of the system (e.g., inspections, reviews,
analyses, tests), and to alleviate the severity of risks
(e.g., array bounds checking coupled with appropriate
responses).

We have also applied this model to study designs of
spacecraft apparatus. Currently the model is in use as
part of the risk management process for an entire
mission. One of our colleagues has explored the use of
the model to assist activity selection across an entire
program of NASA Earth Science Missions [Tralli,
2003]. We have even explored its use for scrutinizing a
portolio of research activities aimed at fulfilling the
needs of practitioners, where the practitioners were
encoded as the model’s requirements, practitioners’
needs as obstacles, and researchers activities as the
mitigations [4].

The diagrams in this paper are computed from actual
data gathered in the application of our model to
spacecraft technologies. These applications are perhaps
the closest to the reliability concerns of this symposium.

2.2 Key Characteristics of Reliability Model

Our use of search and visualization to explore the
consequences of our reliability model relies on the
model being “evaluatable”, in the sense that for a given
selection of mitigations, the model can be automatically
evaluated to yield a measure of cost and of benefit.

Costs arise in our model though association with
mitigations (e.g., the cost of performing a test), and with
repairs (e.g., the cost of repairing a problem that a test
reveals). For a given selection of mitigations, our
software automatically calculates the total of these costs.

Benefits arise in our model from the extent to which
the objectives are attained. Individual objectives are
given numerical weights to reflect their relative
importance. For a given selection of mitigations, our
software automatically calculates the total expected
attainment of those objectives, taking into account the
likelihood and severity of the risks, calculation of which
in turn takes into account the effectiveness of the
selected mitigations at reducing those risks.



The methods described in the following sections rely
only on knowledge of the total cost and benefit for a
selection of mitigations. Thus any reliability model
capable of being evaluated to yield these measures
would fit within our scheme.

3. USE OF SEARCH AND VISUALIZATION TO
REVEAL THE OVERALL COST-BENEFIT TRADE
SPACE

In our technology applications there can be many
mitigations (dozens, possibly hundreds). Most of these
are independent choices, so the combinatorics of
selecting from among these imply a space containing
huge numbers of possible candidate solutions. In a
typical one of our applications, 58 mitigations represent
design and development choices whose costs range from
the low thousands of dollars to, in a few cases, hundreds
of thousands of dollars. Since there are 58 mitigations,
there are in principle 258 (approximately 1017) different
selections from among them.

Straightforward incremental approaches to selection
of mitigations are unlikely to lead to optimal solutions.
For example, what might appear to be a promising-
looking cost-effective mitigation (e.g., one that costs
relatively little and significantly reduces a major risk)
need not necessarily be part of an optimal solution.
There could be another more expensive mitigation that
reduces both that risk, and some other risk for which
there are no alternative mitigations. Thus that more
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expensive mitigation may well need to be selected
anyway, rendering the promising-looking mitigation
irrelevant. This phenomenon arises even within our
relatively simple reliability modeling framework,
because within our models it is typical for a given
mitigation to reduce several risks (and in turn for a risk
to threaten several objectives). Our models also
encompass the phenomenon of mitigations that reduce
some risks, but make others worse (e.g., a vibration test
may serve to detect certain kinds of flaws, but also has
some likelihood of causing flaws; software patches to fix
one set of bugs can themselves introduce their own
bugs). These further complicate judicious selection of
mitigations. We speculate that reliability models that
include design details such as redundancy, spares, etc.,
can readily introduce even more complexity.

In response, we use automated heuristic search for
optimization. This is a widely-accepted approach to
locating near-optimal solutions to complex design
problems. For example, see [5] for an overview of this
kind of work. We have implemented simulated
annealing (a form of heuristic search), included as part
of our software, and use it to locate near-optimal
solutions. We have also explored genetic algorithms,
and machine learning [6] for this same purpose. Using
heuristic search we can search for a specific optimum.
For example, for a given budget, find the set of
mitigations that maximize the benefit (as calculated by
our reliability model) while costing (as calculated by our
reliability model) no more than that budget.
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Figure 1. Visualization of the overall cost-benefit reliability option space



In order to reveal the overall cost-benefit trade space
we use a series of individual cost-bounded optimal
searches at successive cost levels. The result of such a
series of searches, as performed on one of our
technology studies, is shown in Figure 1. The sum total
cost of all mitigations (approximately $4,750,000)
determines the rightmost value of the x-axis, and the
sum total value of all objectives (approximately 3,600)
determines the topmost value of the y-axis. Each of the
approximately 300,000 individual points in the black
“cloud” corresponds -to a solution (i.e., selection of
mitigations). For a given solution, our quantitative
reliability model was used to calculate cost and benefit.
A small black point corresponding to the solution was
then drawn on the plot — solution cost determines
horizontal position, solution benefit vertical position.
The upper-left frontier of the cloud is thus the “optimal”
boundary, also referred to as the “Pareto front” [S]. Note
that we plotted a point for every solution investigated by
the search, not just the “near-optimal” solution points on
the boundary. The simulated annealing search is
designed to concentrate towards this optimal boundary,
so in fact there are many sub-optimal solutions not
explored by this search, and so not plotted (were they to
be plotted they would fall somewhere within the
interior).

Our software automatically performs the heuristic
search, calculating the cost and benefit for thousands of
solutions as it progresses, and generates the plot of their
points on the background of the cost and benefit axes
seen in Figure 1. This is comprised of some 300,000
points. Its generation took approximately of 10 hours
running on a 1.8 GHz PC. The primary determinant of
the time is the time it takes the implementation of the
reliability model to evaluate a given solution’s cost and
benefit values.

For purposes of exposition, we have manually
annotated the figure, using several white ellipses to
highlight regions of interest:

e  Points within the “Sub-optimal interior” indicate
solutions that are far from optimal; for a given
such solution, there are less expensive solutions
that achieve the same level of benefit, and for
that solution’s cost, there are more effective
solutions that achieve more benefit.

e  Points within the “Region of diminishing return”
indicate solutions that, while close to or on the
near-optimal boundary, achieve very little more
benefit than less expensive solutions to their left.
Their selection would be warranted only for the
most risk-averse, wealthy, applications!

e  Points within the “Sweet spot!” region indicate
where we would like to be, budget permitting.

e Points within the “Significant improvement
possible” region indicate solutions that, while
close to or on the near-optimal boundary, could
be significantly improved upon by a small
increase in cost. If we find that for the budget
available, solutions fall within this region, then
there is a strong case to be made for additional
budget. Asking for more money is common; the
distinction here is that the justification for doing
so is clearly evident.

It is possible that the available budget does not
permit attainment of the requisite level of benefit. This
could be because for that budget, solutions fall within
the “Significant improvement possible” region. It could
be because all the solutions, even the most expensive
ones, fail to reach the requisite level of benefit
(reliability). In response it may be appropriate to
abandon some of the objectives, leaving a smaller set
whose attainment can be more effectively achieved.
While this will not necessarily increase the expected
level of attainment of benefit, it may nevertheless be
much preferred for reasons not included with the
reliability model (e.g., highly negative public reaction to
mission failure). This exemplifies the kind of strategic
decision making (e.g., selection of a less ambitious
mission with more certainty of success) that is informed
by kind of cost-benefit trade space information we yield.
That is, we use the power of automated search and
visualization to convey information that is of value to
decision makers, rather than striving to make the
decisions for them.

4. USE OF VISUALIZATION TO REVEAL THE
CONTRIBUTION OF INDIVIDUAL OPTIONS
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Figure 2. Visualizing the contribution of an
individual mitigation

This section shows how the contribution of
individual options within the overall cost-benefit trade
space can be revealed through further visualization. An
extreme example is shown in Figure 2 for a chosen one
of the mitigations involved in the same reliability study
as was plotted in Figure 1. This plots the same points as
were in Figure 1, but colors each point:
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Figure 3. Another mitigation’s visualization

o white if the chosen mitigation is included in the

solution represented by that point, and

e  Dblack otherwise.

The broad swathe of white points that dominate the
upper portion of the figure indicate that the chosen
mitigation is key to nearly all optimal solutions. Only for
very low cost levels do black points appear on the
optimal frontier, indicating that the chosen mitigation
would not be appropriate. We have chosen here a
mitigation that plays a cost-effective role across almost
the entire cost range of solutions. In fact, its cost is
$160,000 (to put this in context, the rightmost extreme
of the horizontal axis corresponds to approximately
$4,750,000).

What appears to be a black “shadow” of the white
region is, in fact, exactly that! Consider a solution found
by our heuristic search that involves the chosen
mitigation; its point will be located appropriately on the
chart, based on that solution’s calculated cost and
benefit, and colored white. Our heuristic search method
will try mutations of solutions, and so is likely to try a
mutation of this solution in which the chosen mitigation
is turned off. The resulting solution will be evaluated for
cost and benefit, and its point located on the chart,
colored black (since it does not involve the chosen
mitigation). Compared to the first solution, it will cost
$160,000 less. so its point will be shifted a small
distance to the left, and, since the solution contributes
greatly to the benefit attainment, in its absence the
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Figure 5. An unworthy mitigation

Figure 4. An expensive mitigation

benefit attainment will be a lot less, so its point will be
shifted down. This phenomenon occurs for most of the
swathe of white points, which we can see are shifted
slightly to the left and significantly downwards to give
rise to the black region.

Figures 3 and 4 show application of this same
visualization technique to two different mitigations (to
save space, these figures are half the height and width of
the earlier figures). The mitigation shown in Figure 3 is
a little more expensive than the mitigation of Figure 2
($200,000 rather than $160,000) but from this
visualization can be seen to be cost-effective (i.e.,
appears along the optimal boundary) only for solutions
starting at approximately $1,000,000. The mitigation
shown in Figure 4 is significantly more expensive
($700,000), and not surprisingly plays a role in optimal
solutions at only the more expensive end of the spectrum
(starting at approximately the $3,000,000 level).

Figures 5 and 6 show two more mitigations. From
their visualizations, it is clear that they are not cost-
effective. The mitigation of Figure 5, even though
relatively low cost, appears in very few places (there’s a
hard to discern at this scale small patch of white on the
optimal frontier around the $1,500,000 level). In fact,
this is a mitigation that (according to the experts who
provided the data in the reliability model) reduces some
risks, but makes some other worse. This visualization
suggests avoiding its use in this application, in keeping
with the experts’ intuition, it turns out. Figure 6 shows
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Figure 6. A dubious mitigation.
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approach to, among other things, Boehm’s well known
COCOMO cost/risk model for software cost and risk
estimation [8], and the Software Engineering Institute’s
recommended set of practices included in level 2 of their
Capability Maturity Model (CMM) for software
development [9]. We have had some opportunity to try
his approach on our reliability models, with positive
results [10]. We are motivated to seek a more direct
comparison of his analytic approach with our
visualization method.
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