Requirements Decomposition Analysis

Dr. Martin S. Feather, Dr. Allen P. Nikora
Jet Propulsion Laboratory,
California Institute of Technology
&
Dr. Jane Oh
Wayne State University
(JPL Summer Faculty Fellow, 2003)

Presented by Martin.S.Feather@Jpl.Nasa.Gov

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Work sponsored by the NASA Office of Safety and Mission Assurance under the Software Assurance Research Program led by the NASA Software IV&V Facility. This activity is managed locally at JPL through the Assurance and Technology Program Office.
Roadmap

- Motivation – Mars Polar Lander
 Example of flawed requirements decomposition

- Requirements Decomposition:
 Means to perform analysis (check decomposition done correctly)

- Example 1: Study of Science Experiment’s Requirements
 - Simple consistency checking
 - Additional complexity arises when timelines involved

- Example 2: Study of an Entire Flight Project’s Requirements
 - Sheer volume of requirements!
 - *Existing* capabilities for traceability
 - *New* capability for traceability closure
 - Extracting relevant requirements *without* relying on existing traceability
 - Motivation
 - *New* capability for text-search based retrieval, & example

- Status & Future
Motivation – Mars Polar Lander

3.7.2.2.4.2 Wait a minute, how many requirements were there?

SYSTEM REQUIREMENTS

1) The touchdown sensors shall be sampled at 100-Hz rate.
 The sampling process shall be initiated prior to lander entry
 to keep processor demand constant.

 However, the use of the touchdown sensor data shall not
 begin until 12 meters above the surface.

2) Each of the 3 touchdown sensors shall be tested
 automatically and independently prior to use of the
 touchdown sensor data in the onboard logic.

 The test shall consist of two (2) sequential sensor readings
 showing the expected sensor status.

 If a sensor appears failed, it shall not be considered in the
 descent engine termination decision.

3) Touchdown determination shall be based on two
 sequential reads of a single sensor indicating touchdown.

FLIGHT SOFTWARE REQUIREMENTS

3.7.2.2.4.2 Processing

a. The lander flight software shall cyclically check the
 state of each of the three touchdown sensors (one per leg)
 at 100 Hz during EDL.

b. The lander flight software shall be able to cyclically
 check the touchdown event state with or without
 touchdown event generation enabled.

 Upon enabling touchdown event generation, the lander
 flight software shall attempt to detect failed sensors by
 marking the sensor as bad when the sensor indicates
 "touchdown state" on two consecutive reads.

c. The lander flight software shall generate the landing
 event based on two consecutive reads indicating
 touchdown from any one of the "good" touchdown
 sensors.

Mars Polar Lander / Deep Space 2 Loss – JPL Special Review Board Report

JPL D-18709 – page 120
If decomposition is incorrect between a pair of levels' requirements, how might this be detected?

- Knowledgeable designers/coders/testers notice something amiss
 - Not thorough or systematic (CMM level I)
- System fails validation test (behavior does not match high-level requirements)
 - Imperfect
 - Can’t test everything
- Inspection/review of the two levels of requirements
 - This CI’s purpose is to improve our ability to do this!
3.1.6 \(\alpha \) shall respond to engineering event notification (via \(\gamma \) DB update) and generate an appropriate response mission replan (sent to \(\gamma \)) within 24MB RAM (peak memory size) and 30625 MI, execution of this plan shall result in less than 0.2% \((= 2\% \alpha \times 10\% \gamma)\) frequency invalid commands (again sent from <System> to the ... FSW, and as determined by flight safety rules) with less than 0.02% frequency invalid commands (from <System> to the ... FSW) (expt 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5, <T>: cpu 2.1.6, ram 2.1.7)

2.1.7 The \(\beta \) CDS shall have 49.5 MB of RAM per spacecraft continuously available for the <System> software image to run during <System> experiment time. Of this only 24MBytes is for <System>-specific planning software, the remainder is carried in the CM RAM budget.

Running Code Size

<table>
<thead>
<tr>
<th>Component</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma) Core + scripts/rules</td>
<td>0.5MB</td>
</tr>
<tr>
<td>(\gamma) Database</td>
<td>3MB</td>
</tr>
<tr>
<td>(\alpha) Database</td>
<td>24MB</td>
</tr>
<tr>
<td>Observation Planner</td>
<td>2MB</td>
</tr>
<tr>
<td>Cluster Manager Logging</td>
<td>20MB</td>
</tr>
<tr>
<td>Total</td>
<td>49.5MB</td>
</tr>
</tbody>
</table>
2.2.2 β shall provide ability to <…>, 512K bytes every 3 days during <System> allocated time (uplink 50k bits per second) (est. 600s per uplink) (est. 3 contacts per day) (for 11.25 Mbits mission uplink per day) Uplink data to be required no more than two days before uplink.

Timelines introduce additional complexity

Level 2 and level 3 requirements: approximately 9 pages in total
Study 2: An Entire Flight Project

(identities being deliberately obscured in this material)

- (1 of) Spacecraft requirements module
 660 requirements

- (1 of) Mission operations requirements module
 235 requirements

- (5 of) Level 2 requirements modules:
 1,370 requirements

- (1 of) Level 2.5 requirements module
 550 requirements

- (5 of) Level 3 requirements modules:
 840 requirements

- (8 of) Level 4 requirements modules:
 1,595 requirements

Scale: sheer volume of requirements!
Partial screenshot of DOORS in "graphics mode"

© Telelogic

Parent's siblings

- Mission Requirements
- Operability
- Payload Requirements

Children

- After achieving the primary sc
- While in cruise to Mars, the o
- While in Aerobraking, after re
- While in Aerobraking, prior to
- After the launch phase, contin
- The orbiter shall provide unre
- Power to each payload element

Power to each payload element shall be separately switchable via a single f…

The Ultra Stable Oscillators

Power to each payload element

The orbiter shall provide the

= Continued in other modules

NASA OSMA SAS, Summer 2003 Requirements Decomposition Analysis
Tracing Decomposition Structure
New Capability

Transitive closure of traceability

Surprise (to me) –
 islands of connectivity
 (i.e., closure ≠ all requirements)

- Automated script
- Traverses traceability links in both directions
- Traversal continues over module (level) boundaries
- Results assembled into single hyperlinked HTML table
- Yields comprehension of decomposition neighborhood
 (e.g., if considering impact of changing a requirement)
- Future refinements possible (e.g., inhibit tracing through...)

NASA OSMA SAS, Summer 2003
Requirements Decomposition Analysis
Extracting Relevant Requirements

Without using Existing Traceability

Why?

While the Project, SQA & IV&V should and will continue to use existing traceability information (e.g., does every requirement trace to a test case? Do the traced-to requirements achieve the traced-from requirement?), nevertheless...

For assurance purposes, don’t want to rely on completeness and correctness of existing traceability information.
Extracting Relevant Requirements Without using Existing Traceability

From the ENTIRE set of project requirements, extract only those dealing with a resource, e.g., mass allocation.

Search for "mass" (potentially many results)

Search for units of mass: "kg" (potentially many results)

Search for " [digit] kg " (yields small set of results)

Note: may need to search for multiple units, e.g., bits per second expressed in Gbps, Mbps, Kbps and bps!

[0-9]()[GgKkMm]([0-9]?)bps
“[0-9](K|k)g” yields 15 requirements dealing with mass. Here are several of them:

Spacecraft Requirements:
The spacecraft shall be designed for a maximum orbiter launch mass of 2180 kg and shall accommodate the following allocations:
- Spacecraft Wet Mass - 1988.0 Kg
- Instruments - 139.0 Kg
- E... - 17.5 Kg
- Project Manager Reserve - 35.5 Kg

Project System Requirements:
Launch Mass: The PS shall be designed for a maximum injected mass of 2180 kg.

The PS shall be designed to accommodate 156.5 kg [including all reserves] of Payload mass.

The PS shall accommodate a reserve of 35.5 kg to be allocated by the project manager.
Status & Future

- ACCOMPLISHED
 - Automated transitive closure script:
 - implemented as PERL script that operates on HTML files as exported from DOORS
 - Regular-expression text-based searches:
 - carried out using DOORS search and filter capabilities:
 - search the project to identify the modules
 - filter those modules to just those requirements

- FUTURE WORK:
 - Implementation:
 - Both could be implemented as scripts within DOORS (using DOORS scripting language DXL)
 - Both amenable to other requirements repositories
 - Refine closure script! Extend searches! Look at checking!