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Abstract. Finding a preferred solution to a complex design problem is challenging. On the 
one hand the problem space is too large and convoluted for human comprehension, while on the 
other hand it is infeasible to elicit the entirety of design knowledge required for hlly automatic 
problem solving. 

We report on a practical application of information technology techniques to aid system 
engineers effectively explore large design spaces. We make use of heuristic search, visualization 
and data mining, the combination of which we have implemented within a risk management tool 
in use at JPL and NASA. 

This approach is demonstrated on the planning for development of an advanced technology 
for spacecraft applications. In this context numerous risk abatement options give rise to a huge 
space of potential design solutions. We show how our approach enhances the system engineers’ 
ability to explore this design space. 

Introduction 
Complexity and the role of information technology. Dealing with increasing complexity is a 
recurring challenge for systems engineering. Complexity stems from two sources: complexity 
within the design itself, and complexity of the space of possible designs. Complexity within the 
design itself (e.g., induced by subsystem interdependencies) makes understanding and evaluation 
of a design a challenging task; complexity of the design space (e.g., induced by options for 
design alternatives) makes selecting which design to adopt out of many possible designs a 
challenging task. Information technology aids system engineers in both these complexity arenas. 
Information technology allows models of a design to be constructed and evaluated, to reveal 
properties of a candidate design ahead of its realization. Information technology allows models 
of the design space to be represented and explored, to reveal overall design tradeoff options, and 
to guide the identification of preferred design choices within that design space. 

The effective use of information technology requires that it be blended with the expertise, 
insights and guidance of systems engineers. For many applications it is infeasible to elicit the 
entirety of design knowledge required for filly automatic problem solving. Instead, design must 
be a cooperative, iterative process between system engineers and the use of the information 
technology that supports them. An approach that supports such a blend is the “design by 
shopping” paradigm advocated in (Balling 1999). Information technology is used to model 
designs, to evaluate those models, and to visualize the results of those evaluations, so that system 
engineers can understand design tradeoffs and emerge with their preferred design. 
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Complexity in planning the development of spacecraft technologies. System engineers at JPL 
and NASA repeatedly face these same complexity challenges when planning the development of 
technologies for spacecraft applications. In this domain, design challenges stem from: 

Cross-disciplinary concerns (e.g., spacecraft involves navigation, propulsion, 
telecommunications). These concerns are cross-coupled and interact in multiple ways 
(e.g., electromagnetic interference, heat transfer). 
Severe constraints on the systems being developed and on the development process itself. 
Time and budget pressures constrain development; operational resources constrain the 
resulting system (e.g., mass, volume, power). 
Mission-critical issues. Spacecraft are critical systems that must operate correctly the first 
time in only partially understood environments, with no chance for repair. 

0 Unknowns: past experience provides only a partial guide when new mission concepts are 
to be enhanced and enabled by new technologies of which past experience is lacking. 

Because of these challenging aspects of space missions, usually no one person has expertise 
that spans all the disciplines, or can simultaneously juggle all the factors involved in large and 
complex designs. Furthermore, much of the design skill is “tacit knowledge” in the heads of 
spacecraft experts, so it cannot be encoded in an automated tool. Therefore, key decision-making 
can be enhanced by a computer-aided, human-informed process. 

In response to these challenges we have been pursuing a “design by shopping” like approach 
that emphasizes resource-effective risk-abatement. Risk concerns play a prominent role in 
planning the design and development of spacecraft systems. Typically there are numerous risk 
abatement options (e.g., analyses, tests) and decision alternatives (e.g., architecture choices, 
implementation alternatives) with significant risk implications. Their costs (time, budget, etc.) 
and benefits (their effectiveness at risk abatement) have to be taken into account when selecting 
among them. 

In this context the number of individual risk abatement options may be modest, but the 
choice of selections from among them is huge (e.g., given 50 binary options, there are 2” E lot5 
ways of selecting from among them). We use information technology to assist experts to make 
these selections. Specifically, we use a blend of modeling, heuristic search, data mining and 
visualization. 

The main steps of our approach are sketched in Figure 1 .  An engineering design model is 
developed based on inputs from technical experts. Heuristic search is used to reveal the 
costhenefit trade space implied by this model. System engineers identify the design 
neighborhood in which they are most interested. The space is culled to just the solutions within 
that neighborhood. System engineers provide “dissimilarity metrics” that indicate what they 
consider to be important distinctions among neighboring solutions. Dispersal and clustering 
algorithms are used to locate a modest number of distinct designs from within that neighborhood. 
Custom visualization presents the located designs to the system engineers, allowing them to 
make their choice of preferred design. 

The remainder of the paper describes this approach in greater detail, and is structured as 
follows: 

We describe the key aspects of our risk-informed design methodology. We use this 
methodology to build early-lifecycle models of designs, which we use to evaluate the 
benefits we expect to attain from those designs, and the costs of developing those 
designs . 
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Figure 1. Overall approach. 

We show the use of 
heuristic search to locate 
(near) optimal designs, 
and visualization to 
reveal the overall cost- 
benefit trade space. 
We describe how system 
engineers, using the 
information revealed by 
heuristic search, select a 

interest” in which they 
wish to concentrate their 
attention on locating a 
preferred design. 
We describe the 
innovative use of 
“dissimilarity metrics” to 
capture the system 
engineers’ intuition of 
when designs are 
interestingly distinct. Our 
implementation uses 
these to extract from the 
previously identified 
neighborhood of interest 
a handful of interestingly 
distinct designs. 
We use visualization to 
further help the system 
engineers understand the 
identified designs. 
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Illustrative example. Throughout we use data from one of the technology assessment and 
infusion planning efforts performed at JPL. The details are proprietary, so we avoid revealing 
specifics. Nevertheless, all the quantities we report (e.g., the number of distinct mitigations) are 
actual figures from the assessment effort, and charts shown have all been generated from this 
data. Briefly, the assessment concemed an electronics packaging technique that has seen wide 
use on Earth, and on some space missions but only inside a temperature controlled housing. The 
focus of the assessment was its novel application to settings where the electronics would be 
exposed to the harsh conditions (e.g., extreme cold temperature) of planetary environments. The 
end goal was to identify and select appropriate design, fabrication, assembly and testing methods 
for the packaging technique so that it could be incorporated reliably into future spacecraft. 

A Risk-Informed Design Methodology 
A risk-informed design methodology underpins our work. Motivation for this stems from a 



vision of using risk as a resource, one that can be traded against other resources such as 
schedule, cost and performance (Greenfield, 1998). The methodology we have developed and 
applied at JPL and NASA supports this vision. It combines insights and skills of spacecraft 
experts, a model for representing their knowledge, a process for building and exploring the 
model, and custom software to support this process. 

At its heart, it relies on users to identify: objectives to be achieved (and their relative 
priorities), the various risks to achieving those objectives, and options for risk mitigation 
(prevention, detection ahead of time, and alleviation). The connectivity among these pieces of 
information is as follows: risks are connected to the objectives that they would impact (should 
those risks occur), and mitigations are connected to the risks they reduce (should those 
mitigations be applied). Note that a risk may impact multiple objectives, an objective may be 
impacted by multiple risks, etc. Note also that different risk impacts and mitigation effects may 
have different strengths, for example, one risk may detract from one objective more than it does 
from another. 

Models of actual technologies and systems are typically voluminous and convoluted, as 
illustrated by the data in Figure 2 extracted from the technology study used throughout this 
paper. This comprises 50 objectives, 31 risks, 58 mitigations, and some 800 links among them, 
numbers typical of the order of magnitude of data gathered in these assessment efforts. 

This data was gathered from experts in a series of facilitator-led sessions, following the 
elicitation process we have established for our risk-centric models. 

The risk-centric design model offers a selection of risk mitigations. For any given selection, 
the model can be evaluated to yield two measures: 

0 cost, calculated as the sum of the costs of the selected mitigations (e.g., the cost to 
perform a test), and of the repairs of risks they detect (e.g., the cost of fixing the bugs 
revealed by testing), and 
benejt, calculated as the sum total attainment of objectives taking risks into account. 
Risks detract from objectives’ attainment, however risks themselves are reduced (in 
likelihood and/or impact) by the selected mitigations. Risk reduction leads to increased 
attainment of objectives. 

0 

For further details of our model, and how it is applied, see (Feather&Cornford 2003). 

Objectives 

Risks 

Mitigations 

Figure 2. Topology of data in a completed risk model. 



Optimal Designs and Heuristic Search 
An optimal design is one that attains its objectives at minimal expense. Generally speaking 
mitigations increase expected objective attainment (by reducing risks), but incur costs. In most 
instances the total cost of all possible mitigations far exceeds the resources available. The 
primary purpose of our methodology is to help identify and select the set of mitigations to apply 
to achieve an optimal design within some cost bound. 

In typical designs there will be many mitigations (dozens, possibly hundreds). The 
combinatorial choices from among these imply a space containing huge numbers of possible 
candidate solutions. In our application, 58 mitigations represented design and development 
choices whose costs range from the low thousands of dollars to, in a few cases, hundreds of 
thousands of dollars. Since there are 5 8  mitigations, there are in principle 258 (approximately 
I Oi7)  different selections from among them. 

We implemented simulated annealing (Kirkpatrick et al. 1983) within our risk toolset, and 
use it to locate near-optimal solutions. We have also explored other forms of heuristic search: 
genetic algorithms and machine learning - for a discussion of these, see (Comford et al. 2003). 
Results of simulated annealing. For our electronics technology dataset, a detailed simulated 
annealing search was performed, organized as a series of individual cost-bounded optimal 
searches at successive cost levels. The resulting cost-benefit trade space is shown in Figure 3. 
The sum total cost of all mitigations (approximately $4,750,000) determines the rightmost value 
of the x-axis, and the sum total value of all objectives (approximately 3,600) determines the 
topmost value of the y-axis. Its generation took on the order of 10 hours running on a 1.8 GHz 
PC. 

Each of the approximately 300,000 individual points in the black “cloud” corresponds to a 
design solution (i.e., selection of mitigations). For a given solution, the software uses the 
quantitative risk-centric model to calculate cost and benefit. A small black point corresponding 

Figure 3. Cost-benefit trade space revealed by heuristic search 



to the solution is then drawn on the plot - solution cost determines horizontal position, solution 
benefit vertical position. The upper-left frontier of the cloud is thus the “optimal” boundary, also 
referred to as the “Pareto front” (Sen&Yang 1998). Note that we plot a point for every solution 
investigated by the search, not just the “near-optimal” solution points on the boundary. This is 
important data, since the steps that follow investigate points close to, but not necessarily on, that 
optimal frontier. The simulated annealing search is designed to concentrate towards this optimal 
boundary. 

The results of our simulated annealing search agree with the partial intuitions that system 
engineers had going into the technology study. At one extreme, they had contemplated funding 
the technology development at the $400,000 level, and had felt that to do so would severely limit 
what could be attained. At the other extreme, they had contemplated a large-scale infusion of 
funding ($3million or more), and had felt that this would be wasteful. 

System Engineers Select Neighborhood of Interest 
The system engineers know of funding availability, and level of benefit (attainment of 
objectives) desired. They use this knowledge to identify their neighborhood(s) of interest within 
the costhenefit trade space revealed by the previous search. 

The reasons we identify a neighborhood of interest, rather than simply picking specific near- 
optimal solutions on the frontier are twofold. First, the data over which the search is performed 
was produced through expert judgment. We do not assume all of those expert judgments to be 
perfectly accurate. That is, solutions within a small percentage of the near optimal solution may 
in truth be no more costly and/or attain no less benefit than ones calculated as the “near-optimal” 
in that neighborhood. Thus such a neighborhood encompasses different design solutions that, 
from the standpoint of cost and benefit, we judge to be equally acceptable within the accuracy of 

Figure 4. Neighborhood of interest. 



our data. Second, there may be factors other than overall cost and benefit that would lead us to 
prefer one solution within this neighborhood over another. For example, one design solution in 
the neighborhood may make use of a hard-to-schedule test facility, while another does not, in 
which case we might prefer the latter. 

While it should in principle be possible to encode such preferences within the utility function 
that guides the optimal search, we believe this to be infeasible in practice. In the first place, much 
of this may be “tacit” knowledge - not evident until the experts see concrete examples of design 
solutions. Even if the experts could foresee all these preferences in advance, our suspicion is that 
it would be a waste of time to ask them to try to articulate them all. Better, have them list just the 
ones that they recognize as the major impediments, perform the search, identify the 
neighborhood, scrutinize the results, and select the preferred solution. 
Results of identifying a neighborhood of interest. An expert-identified neighborhood of 
interest defined as solutions costing I $1,000,000 and attaining 2 95% of the objectives 
attainment of the best solution found at or below that cost limit is shown superimposed and 
magnified in Figure 4. For the dataset, 3,391 solutions (i.e., distinct selections of mitigations) fall 
within the neighborhood. 

Dissimilarity Metrics 
Manual scrutiny of each of 3,391 solutions is tedious at best. Since many will be very similar 

(differing by a small number of the selected mitigations), we use data mining to more effectively 
explore this neighborhood. We define a metric ofdissimifurity - two design solutions (each a set 
of selected mitigations) will have a larger dissimilarity value according to this the more they 
differ from one another. Using this metric, solutions that lie within the neighborhood of interest, 
but which are distinct from one another with respect to this dissimilarity metric, are located and 
presented to the users. 

In our risk-centric model, a design solution is described by a set of mitigations, each of which 
is either “on” or “off’. A dissimilarity metric takes as input a pair of design solutions, and returns 
a numerical measure of dissimilarity. 

A simple metric is to count the number of mitigations over which two design solutions differ, 
that is, count how many mitigations are “on” in one but not both of those solutions. If bit strings 
represent solutions, each bit corresponding to a mitigation, with value 1 if that mitigation is “on”, 
0 otherwise, then this metric is the Humming distance between solutions’ representations. 

Another metric is to sum the costs of all the mitigations that are “on” in one but not both of 
two solutions. This metric therefore ranks as more dissimilar solutions that differ by higher cost 
mitigations. 

Yet another metric makes use of relevant groupings of mitigations. For example, in our 
technology assessment studies, it is common to classify mitigations according to the phase in 
which they would apply - design, fabrication, assembly, test. We can define a metric of 
dissimilarity based on the difference in costs between these phases. 

The experts using our software select which metrics to use to explore the neighborhood of 
design solutions. 

Data Mining for Interesting Solutions 
Given a neighborhood of solutions, and a dissimilarity metric chosen by the experts, we use 

two data mining techniques to locate solutions distinct with respect to the chosen metric: 



Dispersal: a set of maximally dispersed (using the metric of “dissimilar”) solutions is 
extracted from the neighborhood of interest. 
Clustering: similar solutions, i.e., solutions that are close in distance according to the 
metric of “dissimilar”, are aggregated into clusters. 

Space limitations in this paper preclude the in-depth treatment of both techniques, so we will 

We have implemented a dispersal method that is a fast approximation of an idealized 

Input C (> 1) the number of dispersed solutions that the method is to find. 
Let N be the set of design solutions in the neighborhood of interest: 

focus solely on the dispersal technique. Clustering is discussed briefly in (Menzies at al, 2003). 

dispersal algorithm. It works as follows: 

Initialize S to be the singleton set holding the optimal design solution in N; 
While S’s cardinality C, do: 

o Find a design solution ds in (N - S) such that ds’s minimum distance from all the 
design solutions in S is as great as possible. 

o Add dstoS. 
Results of data mining using dispersal. Our approximate dispersal algorithm was applied to 
find 10 dispersed solutions with respect to each of the three metrics discussed above from the 
expert-identified neighborhood. It took under 2 minutes to find and plot the visualization of the 
30 dispersed solutions - 10 dispersed solutions for each of the three metrics. Table 1 shows the 
dispersal distances between solution point SI  and its shortest metric distance to the points s2.. .sn 
where,n = card@) 

Cost difference of phases 

Table 1: Dispersal distances 
Recall that our study involves a design with 58 distinct mitigation options. Observe that 

starting from the near-optimal solution that costs no more than $lmillion, our “hamming 
distance” metric led to the discovery of 9 further solutions within the 5% neighborhood that 
differed from the optimal by at least 16 and as many as 23 of those mitigation options (i.e., 27% 
to 39%). By way of contrast, the neighborhood’s top 10 solutions (i.e., the 10 highest-benefit 
scoring solutions costing no more than $lmillion) differed from the optimal by as few as 2 and 
as many as 10 mitigation options (i.e., 3% to 17%). 

The cost-based metrics led to similarly diverse solutions. The total cost of the mitigations by 
which the 9 further solutions each differ from the near optimal solution range from $360,000 to 
$650,000 (more details of these solutions are presented in the next section). By way of contrast, 
the neighborhood’s top 10 solutions (i.e., the 10 highest-benefit scoring solutions costing no 
more than $lmillion) differed from the optimal by as little as $9,000 and as much as $129,000. 

The diversity of the cost difference solutions shows a similar pattern - for the top 10 
solutions, such diversity is modest, while for the dispersal-discovered solutions, significantly 
more diverse solutions are found. 



Value of locating dispersed solutions. As we discussed earlier, the neighborhood of interest 
encompasses a large number of different design solutions that, from the standpoint of cost and 
benefit, we judge to be equally acceptable within the accuracy of our data. The value of our 
simple data mining technique lies in its ability to locate significantly diverse solutions with 
respect to a provided metric. By choosing a metric that corresponds to interestingness (the 
farther apart two solutions are, the more interestingly the difference between them), it locates 
solutions that as interestingly distinct as possible. Our results indeed exhibit this, as seen when 
we scrutinize the solutions in detail, considered next 

Visualization of the Data Mining Results 
Visualization is used to present results of the dispersal method of data mining to the system 
engineers, allowing them to see what distinct solutions are available, and to understand the ways 
in which those solutions differ (and the ways in which they do not differ). 

We use a simple tabular display as the means to provide a visualization of the overall 
dispersal results. We also have available the risk tool’s mechanisms for detailed scrutiny of 
individual solutions, and make particular use of capabilities to compare alternate solutions. 

These are most easily explained with reference to examples taken from our application of 
spacecraft technology planning. 
Tabular visualization of data 
mining results. Figure 5 shows our 
tabular display. Each of the rows 
represents a mitigation, with its 
cost, number and title listed to the 
right (in order to protect the 
proprietary nature of this 
information, the portion of the 
table showing the mitigation names 
is omitted from this figure). Each 
of the columns of black and white 
squares represents a distinct 
solution (selection of mitigations). 
If a mitigation is included in a 
solution, the corresponding cell is 
filled in, otherwise it is left blank. 

Since the focus is on how 
solutions differ, mitigations that 
are constant across all of the 
dispersal solutions (either always 
on or always off) are omitted. 
Hence every row in the displayed 
results involves at least one black 
square (mitigation included) and 
one white square (mitigation not 
included). The information about 
which mitigations remain 

3 w 

optimal solution 
Each column is a solution / 

mitigation 
cost number 

f 

(rows below here omitted from figure) 

H = mitigation included in solution 

0 = mitigation not included in solution 

Figure 5. Tabular visualization of dispersal results. 



consistently on (or off) over all the solutions is also of value, and is presented to the system 
engineers separately. 

The display shows dispersal results using the metric of the sum of the costs of all the 
mitigations that are “on” in one but not both of two solutions. The mitigations are arranged in 
order of decreasing cost, to draw attention to the most expensive ones first. 

The visualization reveals that within the neighborhood explored, there are several relatively 
high cost mitigations that play a role in some, but not all, of the solutions in that neighborhood. 
Recall that the neighborhood was constrained to solutions whose total cost is no more than 
$lmillion, and whose benefit is within 5% of the maximum benefit of solutions in that 
neighborhood. For example, note that there are six relatively high-cost ($100,000 and up) 
mitigations listed. 

The system engineers, informed by this information, can contemplate whether any of the 
alternatives stand out as particularly appealing. Suppose, for example, that mitigation number 
4.5.3.1 (the fourth one down) will require access to a shared testing resource that is hard to 
schedule. Knowing this, they may prefer to avoid its use if possible. Several of the columns 
indicate solutions that do not rely on that particular mitigation. 

Another aspect of this visualization is that system engineers can see the details of each 
individual solution alongside one another. For example, five of the six top rows are mitigations 
that fall into the testing category (those mitigations whose number begins with the digit 4). From 
the table it is easy to see the available combinations from among these five relatively expensive 
options. 

It is even possible that the system engineers will wish reject all these solutions, having now 
realized some constraint that was not previously articulated. In such an event, we would use that 
constraint as a filter on all the solutions originally discovered by search, yielding a revised cost- 
benefit trade space, and triggering reconsideration of the neighborhood of interest, etc. 
Comparison of individual solutions. In our risk-averse setting, system engineers wish to 
scrutinize the detailed ramifications of solution altematives in terms of changes to individual 
risks, and changes to attainment of individual objectives. The tabular visualization above shows 
only which mitigations are involved. To understand the detailed ramifications we turn to use of 
our risk tool’s bar chart display. 

Figure 6 shows the DDP bar chart display in use to compare changes to individual risks 
between solution alternatives. Our technology study involved 31 risks. The bar chart uses a 
vertical bar for each such risk. Each risk’s magnitude (after taking into account the risk-reducing 
effects of the selected mitigations) is indicated by the heights of the bar (using a log scale on the 
vertical axis). We can obviously use such a bar chart to display the risk magnitudes of an 
individual solution. The figure shows comparison between two solutions. One solution has been 
adopted as the “baseline” (in the two examples shown, we set the “optimal” solution as this 
baseline), and an alternate solution is compared against it. Increase in risk in going from the 
optimal to the alternate is colored black, and decrease is colored red. 

In the upper chart we can see at a glance a particularly striking increase in one particular risk 
- the one topped by the black bar that extends above the “100” level. Conversely, in the lower 
chart we see that the risk increase is more dispersed over several risks. The utility of information 
such as this is that it can focus attention on the (relatively few) places where solution alternatives 
have significantly different ramifications. The system engineers might, for example, be 
motivated to brainstorm on novel ways to mitigate that strikingly increased risk of alternative 1. 
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Figure 6. Comparison of alternative solution’s individual risks. 

We can also use the same charting capabilities to show ramifications in terms of objective 
attainment. In our technology studies, system engineers can utilize such information to guide 
them to locate the applications for which the technology is best suited. 

Conclusions 
Approach and related work. This paper has described an approach that applies information 
technology to assist system engineers explore large design spaces. The approach blends the 
computational power that information technology offers with the expertise, insights and guidance 
of system engineers. Appropriate visualizations are used to convey to the system engineers the 
salient aspects of the computational results. Its key elements are the following: 

Heuristic search, in the form of simulated annealing, has long been used for design 
optimization. The risk-centric model we use to evaluate points in the design space is 
somewhat novel. Its closest mainstream equivalent is Quality Function Deployment 
(QFD) (Akao 1999). Our model is specialized to risk concerns, and adopts a probabilistic 
interpretation of risk that is suited to the quantitative evaluations necessary in order to 
employ automated search. More details of our risk-informed methodology, and the tool 
support we have built to support it, can be found at http://ddptool.jpl.nasa.gov 
Our use of dissimilarity metrics bears a resemblance to the “unexpectedness” measures of 
(Padmanabhan & Tuzhilin 1999), but is simpler to conduct because we seek only to 
locate unexpected data, not patterns in that data. We use some straightforward 
visualizations to convey the interesting design alternatives located using these metrics. 
Our overall approach matches the “design by shopping” paradigm (Balling 1999). An 
impressive blend of computation and visualization (offering user-driven selection of how 
to display data using a mixture of 3-D spatial location and color) that also matches this 
paradigm is to be found in (Stump et a1 2002). Our use of dissimilarity-metrics-based 

http://ddptool.jpl.nasa.gov


data mining substitutes for such sophisticated visualization capabilities. The other 
extreme, more reliance on computational reasoning over the design information, is 
exemplified by the approaches of a colleague of ours (Menzies and Hu 2003). 

Application. In this paper we have reported on a substantive practical application of these 
techniques to the selection of risk abatement solutions in the design of advanced technology. A 
study was performed at JPL to plan the development of an electronics packing technology for 
future spacecraft missions. While technologies for spacecraft use represent seemingly esoteric 
problems, the design challenges that arise in planning their development are widespread - cross- 
disciplinary concerns, resource constrained systems, risk averseness, and novel aspects of use. 
The complexity stemming from these challenges is also widespread 
Future work. In future work we plan to investigate a closer connection between the dispersal 
and clustering techniques. In particular, we plan to use the former to rapidly get an overall feel 
’fot how solutions are dispersed, and use that information to guide slower but more revealing 
clustering algorithms. We also would like to take into account knowledge of uncertainty 
distributions in the input data to help better identify neighborhoods of interest, data mining and 
visualization to aid experts in making design decisions. 
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