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Abstract 
A new method for solving the hitting set problem is proposed. This method is based on the mapping of the 

problem onto an integer programming optimization problem. This new approach provides an algorithm with much 
better performance compare to the algorithms for the bitting set problem that currently are used for solving the 
diagnosis problem. The relation of this approach with the satisfiability problem and the complexity of the problem 
are also discussed. 

1 Introduction 
The Hitting Set Problem, also known as the Transversal Problem, is one of key problems in the combinatorics of 
finite sets (see [l]) and the theory of diagnosis (see [ 12,2]). The problem is simply described as follows. A collection 
S = {SI,. . . ~ Sm} of nonempty subsets of a set M is given. A hitting set (or transversal) of S is a subset H C M 
that meets every set in the collection S; Le., Sj n H # 0, for every j = 1, . . . , m. Of course, there are always trivial 
hitting sets, for example the background set M is always a hitting set. Actually we are interested in minimal hitting 
sets with minimal cardinality: a hitting set H is minimal if no proper subset of H is a hitting set. 

Our primary interest to €Wing Set Problem is its connection with the problem of diagnosis (for more applications 
of this problem see, e.g., [3, 61). Here we briefly review this connection. In model-based diagnosis approach 
[12, 21 one starts with a description (model) of the system which is a list of the components, their function, and 
the interconnections of the components. The diagnosis problem arises when some observations of the system’s 
actual behavior is in contradiction with the system’s expected behavior. More formally, a system is represented as 
(SD, COMPONEhTS, OBS), where COMPO.NENTS is a finite sets of components constituting the system (they are 
the constants of the logical theory describing the system), and SD and OBS are finite sets of first-order sentences 
describing the system description and observations, respectively. There is a distinguished unary predicate AB, where 
AB(c)  is interpreted as “the component c is abnormal or faulty.” A diagnosis of the system is a conjunction of the 
following form determined by a subset D C COMPONENTS 

such that the set SD U OBS U { A(D)} is consistent. Thus the conjunction A(D) is a diagnosis if the assumption of 
abnormality of the components in the set D is not in contradiction with the system description and the observations 
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in hand. The diagnosis A ( D )  is minimal if for every proper subset D’ c D, the conjunction A(D’) is not a 
diagnosis. Reiter [12] introduced the notion of “conflict” as a technical tool for finding the minimal diagnoses. A 
subset C g COMPONENTS is a conflict of the system if the set 

SD U OBS U { iAB(c) : c E C} 

is inconsistent. Equivalently, the set C = (c1, c2, . . . , ck} is a conflict if and only if the disjunction 

r(c) = A B ( C ~ ) V A B ( C ~ ) V . . . V A B ( C ~ )  
logically follows from the system; Le., SD, OBS I’(C). (To be more precise, we should call C (or r(C)) apositive 
conflict; in the general definition, r(C) may contain negations.) The conflict C is minimal if no proper subset of C 
is a conflict. Let C be the collection of all minimal conflicts of the system. Then the main theorem in the theory of 
model-based diagnosis [12, 21 states that the minimal diagnoses of the system are exactly the minimal hitting sets 
of c. 

The Reiter’s hitting set algorithm [ 121 is one the major algorithms for finding minimal hitting sets. The correction 
of this algorithm is provided by [8] and a modified more efficient version by [15]. The original algorithm and its 
modifications are based on generating the lattice of the subsets of the background set M and then extracting a 
sublattice of it that provides the minimal hitting sets. If the goal is to find a minimal hitting set with minimal 
cardinality, then this algorithm is not efficient by any means; because it requires to save the whole sublattice which 
leads (in the worst case) to the need of an exponential size memory to save the sublattice. In Section 4, we will show 
that it is possible to find a minimal hitting set with minimal cardinality with an algorithm that requires a linear size 
memory (while it still may needs an exponential time to complete the computation). 

Our approach for solving the Hitting Set Problem is two-folded. In one hand we map the problem into the 
Monotone Boolean Satisfiability Problem. This provides the opportunity of utilizing the super-polynomial algo- 
rithms for finding the prime implicants of monotone functions (see [6,9]). Also this mapping makes it possible to 
better understand the complexity of the Hitting Set Problem, by comparing it with the well-studied Boolean function 
problems. On the other hand, we map the problem onto an integer programming optimization problem. This simple 
mapping gives us access to vast repertoire of integer programming techniques that in some cases can effectively 
solve problems with several thousands variables. We would like to mention that mapping of the problem of finding 
prime implicants (not necessarily prime implicants of monotone formulas) onto the integer programming has already 
been introduced; see, e.g., [lo, 111. The mappings of the hitting set problemonto monotone satisfiability and integer 
programming, which is introduced in this paper, provides a new mapping of the problem of finding prime implicants 
of monotone formulas onto the integer programming. 

2 Complexity of the Hitting Set Problem 
Before we describe our algorithm, we would like to look at the complexity of the Hitting Set Problem. Although it 
is well-known that, in general, this problem is intractable, we show that even the restricted form of this problem, 
which we are interested in, is also NP-complete. 

First note that for any system S of subsets of the set M = {ml, m2,. . . , mn}, finding one minimal hitting set is 
easy. We define the sequence Mo, MI, . . . , recursively as follows: let MO = M ;  suppose that the set M j  is 
defined; let H = Mj \ {mj} ,  i.e., remove the member mj from Mj;  check whether H is a hitting set, if it is then let 
Mj+] = H ,  otherwise let = Mj.  Then it is easy to see that each set of the sequence Mo, M I , .  . . , Mn+l is a 
hitting set and the set is in fact a minimal hitting set. The more challenging, and more interesting both from 
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practical and theoretical point of view, is the problem of finding hitting sets of small size. It turns out that this is a 
hard problem. First let formalize the problem. 

s, 

s, 

HITTING SET 
INSTANCE: A system S = {S1,. . . , S,} of subsets of the set M and a constant $ < c < 1. QUESTION: Is there a 
hitting set H g M such that [HI 5 c IMI? 

0 1 . . .  1 

. .  . . .  . .  . . .  
1 1 ... 0 

We should mention that it is well-known that the above problem is NP-complete if the condition is replaced by 
I HI 5 K ,  where K 5 /MI (see [7]). It is also known that in this latter form the problem remains NP-complete even 
if lSjl 5 2, for every 1 5 j 5 m. Here we show that this restricted form of the problem remains NP-complete. In 
[3] the complexity of several other problems related to hitting sets is investigated. 

Theorem 1 The problem HITTING SET is NP-complete. I t  remains NP-complete even if ISjI 5 3, for every 
l l j s m .  

Proof. We use the transformation from the following NP-complete problem on monotone satisfiability (see 
[14]): An n-variable monotone CNF F where each clause contains at most 3 variables and a constant number 
c E [i, 1) are given; is there a vector a E (0, I}, such that F ( a )  = 1 and wt(a) 5 cn? (Here wt(a) denotes the 
Hamming weight of the binary vector a.) 

Suppose that F = AlSjlm Cj is a monotone CNF, where Cj = x j l  V x j ,  V xj3 .  Consider the system S = 
{SI, S 2 , .  . . , S,} where Sj = { x j l ,  x j z ,  x j 3 } .  Then there is a vector a E (0, l}, such that F(a) = 1 and 
wt(a) 5 cn  if and only if the system S has a hitting set H with [HI 5 cn. I 

3 Mapping onto Boolean Satisfiability Problem 
In order to describe mapping of the Hitting Set Problem onto Boolean Satisfiability and 0/1 Integer Programming 
problems, consider a different representation of the problem by describing the attribution of the members to subsets 
as given by the following matrix: -a- 
where S = {SI, S2 , .  . . , S,} and M = {ml, m2, . . . , m,} denote the set of nonempty subsets and the set of 
members (elements), respectively. The (i,j)tt’ entry in this matrix is denoted as aij and we have aij = 1 if mj 

belongs to Si otherwise aij = 0. To map the problem to Boolean Satisfiability, we introduce the Boolean variables 
x l ,  2 ,  . . . , x,, where each variable x j  represents the member mj. Then to each subset Si = {mjl , mj,, . . . , mjni } 
(i.e., each row of the matrix (1)) we correspond the disjunction 

( 2 )  

i.e., for each “1” in the ith row of the matrix (1) the corresponding Boolean variable appears in the disjunction (2). 
For example, if the ith row of the matrix (1) is (0, I, 1,0,0,1,0) then Fi = 2 2  V 2 3  V 26. Then the CNF 

Fi = ~ j l  V ~ j 2  V . . V x jn i  ; 

Fs = Fi A F2 A . . .  A F, , (3) 
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represents the mapping of the Hitting Set Problem associated with the system S onto the Boolean Satisfiability 
Problem in the sense that every hitting set of the system S, in a natural way, corresponds with a satisfying truth- 
assignment for the CNF Fs, and vice versa. 

We should notice that the CNF (3) is in fact monotone. In the case of monotone formulas, the standard form of the 
Satisfiability Problem should slightly be modified to avoid the trivial cases (see [14] for details). Note that, in the case 
of the monotone formulas, the all-one vector (1,1,. . . , 1) is always a satisfying truth-assignment (equivalently, the 
background set M is always a hitting set). Here the correct formulation of the problem is to find the assignments with 
bounded weight, or in the hitting set setting, the problem is to find hitting sets with bounded number of members. 
In [14] it is shown that the problem of finding truth-assignments for monotone formulas with weight 5 cn,  for 

5 c < 1, is NP-complete. Also, the problem of finding minimal hitting sets of the system S reduces to the 
problem of finding prime implicants of the monotone function Fs. 

We should mention here a new results [6,9] which suggests a major breakthrough regarding finding hitting sets in 
the most general case of the problem. They show that there is an algorithm that produces the list of prime implicants 
of a monotone Boolean function such that each prime implicant is produced in time 0 (nt + n0(l0g " I ) ,  where t 
is the time needed to determine the value of the Boolean function at any point. Also the list that produced by this 
algorithm has no repetitions. Practical implication of this result for hitting set problem is that for the systems that 
do not have large number of minimal hitting sets (Le., there are at most superpolinomailly many minimal hitting 
sets), it is possible to solve the hitting set problem in superpolynomial time, instead of exponential time of a typical 
NP-complete problem. 

4 Mapping onto the 0/1 Integer Programming Problem 
In order to describe the mapping onto 0/1 Integer Programming Problem, define the n x m  matrix A = 
associated with the system S, as defined in (1). Note that, by this definition, each row of A corresponds to a subset 
and each column to a member. The mapping onto 0/1 Integer Programming Problem simply obtained by consider- 
ing an operator application of A as follows. Identification of a minimal subset of members, representing a minimal 
hitting set, is equivalent to finding a minimal subset of columns of the matrix A whose summation results in a 
vector with elements equal to or greater than 1. This can be better described in terms of matrix-vector operation 
as follows. Let the vector Ai, for i = I , .  . . , m, denotes the ith row of the matrix A. Also, define a binary vector 
z = (zl,x2,. . . , 2,) E Rn, wherein zj = 1 if the member mj belongs to the minimal hitting set, otherwise xj = 0. 
Since at least one member should belong to every Si, for every i = 1,. . . , m, we then have 

lsjsn 

A ; . z > l .  

Since, by the definition of the minimal subset, the above equation should be simultaneously satisfied for all i = 
1, . . . , m, we then have the following formulation of the problem as an 0/1 integer programming problem 

minimize wt(z) 
subjectto A z T  2 bT (4) 

where b = (1,1,. . . , 1) E Rm is the all-one vector, and we denote the Hamming weight, Le., the number of 
one-components of the binary vector z, by wt(z). With this setting, identification of the minimal hitting set is 
then equivalent to solution for the binary vector z from (4), which corresponds to the solution of the 0/1 Integer 
Programming Problem. 
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Note that (4) represents a rather special case of the 0/1 Integer Programming Problem since the matrix A is a 
binary matrix, Le., with 1 or 0 elements only. Interestingly, our above derivation also establishes a mapping of the 
Monotone Boolean Satisfiability Problem onto this special case of 0/1 Integer Programming Problem. To see this, 
note that any Monotone Boolean Satisfiability Problem, given by the CNF (3), can be equivalently represented by a 
matrix similar to (I), from which the mapping onto this special case of 0/1 Integer Programming Problem follows 
immediately. 

5 Monotonicity 
One of the most important characteristics of the Hitting Set Problem is its monotonicity. This property reveals itself 
in different forms. For example, in the Boolean formula formulation of the problem, the formula Fs in (3) is a 
monotone Boolean formula (i.e., a formula expressed only with AND and OR operations, with no NOT operation). 
In the linear optimization formulation of the problem, as expressed in (4), if a: is a solution of A zT 2 bT, then 
any binary vector g 2 a: is also a solution (here, g 2 a: means that componentwise we have y j  2 q). We believe 
that incorporating this important property of the Hitting Set Problem with the existing algorithms will result in new 
algorithms with much more better performances. For example, instead of a generic integer programming method for 
solving the optimization system (4), a new algorithm utilizing the monotonicity property could be more efficient. 

As we mentioned in Introduction, our primary concern with the Hitting Set Problem is its application in the 
diagnosis problem. Since in most practical applications the number of faulty components of the system is very small, 
we find that in such cases a structured brute force search algorithm, using the monotonicity property, could provide 
a solution very fast. Even in some cases faster than a standard integer programming algorithm. The structured brute 
force search algorithm, first looks in sets of size 1 for a solution, then in sets of size 2, and so on (see [4] for details). 
For example, if there are two faulty components, then such search could find them in less than a minute in a system 
with more than 1000 components. 

6 Conclusion 
We have proposed a new method for solving the celebrated hitting set problem. This method is based on the mapping 
of the problem onto an integer programming optimization problem. There are two important advantages of this 
approach comparing with the existing algorithms. (1) One important advantage of this method is that once the 
hitting set problem is mapped onto an integer programming optimization problem, then the inventory of various 
already existing integer programming algorithms and softwares are available for solving instances of the hitting 
set problem. (2) This approach makes a great improvement on the algorithms currently used for solving diagnosis 
problem. The Reiter’s hitting set algorithm [12] and its revisions [8, 151 all need exponential size memory to be 
implemented. In contrast, our integer-programming based algorithm requires a linear size memory (while it still 
may needs an exponential time to complete the computation). We should also mention that this method provides a 
valuable theoretical tool for investigating the size of the solutions of the hitting set problem; the details of this finding 
will be describe in another paper [5]. 
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