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ABSTRACT 

The most widely used approach to model-based diagnosis consists of a two-step process: (1) 
Generating conflict sets from symptoms; (2) Calculating minimal diagnosis set from the conflicts. 
Here a conflict set is a set of assumptions on the modes of some components that is not 
consistent with the model of the system and observations, and a minimal diagnosis is a set of the 
consistent assumptions of the modes of all components with minimal number of abnormal 
components. However, there are major drawbacks in the current model-based diagnosis 
techniques in efficiently performing the above two steps that severely limit their practical 
application to many systems of interest. For conflict generating problem, these techniques are 
usually based on different versions of Truth Maintenance (TM) method, which lead to exhaustive 
search in the space of possible modes of the components. The most common method for finding 
minimal diagnosis from the conflicts is based on Reiter’s algorithm [9], which requires both 
exponential time and exponential space (memory) to be implemented. 

In order to overcome these limitations, we propose a novel and two-fold approach: First, 
we propose a new approach for generating conflict sets based on mapping this problem onto the 
well-studied problem of finding paths in a graph [5]. This approach can significantly accelerate the 
conflict generation step by bounding the search space and thus avoiding unnecessary search. 
Second, we propose a novel algorithmic approach and a set of new algorithms for calculation of 
minimal diagnosis set, which is an inherently intractable (NP-complete) problem [3]. However, 
our new approach allows the development of new algorithms that enable more efficient solution 
for large and realistic problems. More specifically, our new approach allows us to calculate the 
lower and upper bounds on the size of the solution. Utilizing these new insights, we are able to 
develop a new version of the branch-and-bound method for solving the problem. 

INTRODUCTION 

The diagnosis problem arises when some symptoms (anomalies) are observed, that is, 
when system’s actual behavior contradict the expected behavior. System diagnosis is then the 
task of identifying faulty components that are responsible for anomalous behavior. To solve the 
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diagnosis problem, one must find the minimal set of faulty components that explain the observed 
symptoms. The most disciplined technique to diagnosis is termed "model-based because it 
employs knowledge of devices' operation and their connectivity in the form of models. This 
approach [4] reasons from first principles and affords far better diagnostic coverage of a system 
than traditional rule-based diagnosis methods, which are based on a collection of specific 
symptom-to-suspect rules. 

The diagnosis process starts with identifying symptoms that represent inconsistencies 
(discrepancies) between the system's model (description) and the system's actual behavior. Each 
symptom identifies a set of conflicting components as initial candidates. A minimal diagnosis is 
the smallest set of components that intersects all conflict sets. The underlying general approach 
in different model-based diagnosis approaches can be described as a two-step "divide-and- 
conquer" technique wherein finding the minimal diagnosis set is accomplished in two steps: a) 
Generating conflict sets from symptoms, and b) Calculating minimal diagnosis set from the 
conflict sets. This two-step approach can be better described by considering the well-known 
Hitting Set Problem. The problem is simply described as follows. A collection S = { SI, . . . , S,} of 
nonempty subsets of a set M is given. A hitting set (or transversal) of S is a subset H of M that 
meets every set in the collection S; i.e., Sj n H#@, for every j = 1, . . . , m. Of course, there are 
always trivial hitting sets, for example the background set M is always a hitting set. Actually we 
are interested in minimal hitting sets with minimal cardinalitfl a hitting set H is minimal if no 
proper subset of H is a hitting set. In summary, the conflict generation corresponds to forming a 
collection of sets, and calculating minimal diagnosis corresponds to the solution of the hitting set 
problem for this collection (see Figure 1). 

Figure 1. Diagnosis as the hitting set of conflict sets 

However, there are major drawbacks in the current model-based diagnosis techniques in 
efficiently performing the above two steps that severely limit their practical application to many 
systems of interest. First, the existing conflict generating algorithms are all based on various 
versions of constraint propagation method and truth maintenance systems. The problem with 
these methods is that not only they need exponential time but usually they also require 
exponential memory to be implemented. Therefore, these methods cannot handle realistic 
systems with large number of components. Second, in order to find the minimal diagnosis set, 
current model-based diagnosis techniques rely on algorithms with exponential computational cost 
and hence are highly impractical for application to many systems of interest. 

In this paper, we present a novel and two-fold approach for model-based diagnosis to 
overcome the two above-mentioned limitations and to achieve a powerful engine, which can be 
used for fast diagnosis of large and complex system. First we present a novel algorithmic 
approach for calculation of minimal diagnosis set. We present a powerful yet simple 
representation of the calculation of minimal diagnosis set. This representation enables the 
mapping onto a well-known problem, that is, the 0/1 Integer Programming problem. The mapping 
onto 0/1 Integer Programming problem enables the use of variety of algorithms that can efficiently 
solve the problem for up to several thousand components. Therefore, these new algorithms 



significantly improve over the existing ones, enabling efficient diagnosis of large complex 
systems. In addition, this mapping allows, determination of the lower and upper bounds on the 
solution, i.e., the minimum number of faulty components, before solving the problem. We exploit 
this powerful insight to develop yet more powerful algorithm for the problem. This new algorithm 
is a new version of the branch-and-bound method. Next, we propose a new approach for 
generating conflict sets based on mapping this problem onto the well-studied problem of finding 
paths in a graph [SI. This approach can significantly accelerate the conflict generation step by 
bounding the search space and thus avoiding unnecessary search. 

DIAGNOSIS ENGINE 

The methods described in this paper are continuation of our previous work [l]. The result 
of that effort was a new tool, Diagnosis Engine version 1.0. This engine is based on a novel and 
compact reconstruction of General Diagnosis Engine (GDE), as one of the most fundamental 
approaches to model-based diagnosis, and our novel algorithmic approach for calculation of 
minimal diagnosis set. This tool, Diagnosis Engine version 1 .O, constitutes several components 
so that it has the capability to an end-to-end diagnosis. The key components of the Engine are: 

DescriDtion of the svstem. The first step of diagnosis process of a specific system is to 
define the system. This step itself involves two stages. (i) We have to specify the 
functionality of all possible components used by the system. Right now, the code we 
have developed in LISP is capable of handling components in arithmetical (adder- 
multiplier gates) and Boolean (logical gates) settings. Extending the LISP code to other 
discrete settings is straightforward. (ii) We have to define the interconnections between 
the components of the system. We have adapted a natural way to specify these 
interconnections in the LISP code. The inputs and the observations of the system are 
treated as part of system description, and are provided by this component. 
Conflict findina Drocess. The conflict finding routine of version 1 .O of Engine is based on a 
reconstruction of GDE method [lo]. The General Diagnostic Engine (GDE) is one of the 
most fundamental approaches to model-based diagnosis. GDE combines a model of a 
device with observations of its actual behavior to detect discrepancies and diagnose root 
causes. However, GDE also suffers from the two main limitations of other model-based 
diagnosis approach; that is, the complexity of software makes its application difficult, and 
there is an exponential computational cost for finding the minimal set. In order to 
overcome the first limitation we have developed a novel and compact reconstruction of 
GDE. Traditionally GDE has been implemented using an inference engine to reason 
about a device model combined with an Assumption-based Truth Maintenance System 
(ATMS) to keep track of assumptions. A surprising result that arose from our rational 
reconstruction of GDE involves merging the ATMS with the inference engine. It turns out 
that the ATMS and the inference engine have many similarities, and combining the two 
dramatically simplifies the algorithm. The resultant system was completely implemented 
in under 150 lines of LISP code! The output of this component is a matrix A defining the 
conflict sets (more details about this matrix in the next section). 
lnteaer oroarammina solver. The conflict matrix A, that is the output of the conflict finding 
routine, will be used to solve an integer programming problem. To this end, the Engine 
has two methods in its disposal. One is an enhanced version of the brute force method 
(see [l J for details). This method is very successful in the case of small number of faults. 
We will describe it later. The other method is the GLPK GNU Linear Programming bit), 
version 3.2. This is a set of routines in the ANSI C programming language. The integer 
programming routine of GLPK (actually it is much more powerful routine and is capable of 
solving mixed integer programming problems) applies a variant of branch-and-bound 
method for the problem. The GLPK, like other available integer programming solver tools, 
provides only one solution. The Engine has capability of finding all possible solution of. 
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As the first stage of benchmarking and validation of the tool, we applied our engine on test cases 
of circuits with adder and multiplier gates (Figure 2 shows one such circuit). The following tables 
show the results of these experiments. 

Table 1. Some of the Results of Benchmarking 

-~ a , -  1 
105 I 12xluS I 3 I < 1  SEC. I 

I 10x105 I 2 I < 1  SEC. 
I ^ _  

05 - I 

105 12x105 4 < 1 SEC. 
105 17x105 5 < 1 SEC. 
105 23x105 6 2 SEC. 

Multiplier gate 

Q Adder gate 

Figure 2. A 105-gate circuit 

The algorithms discussed in this paper are in fact improvements of methods utilized by 
the above Engine. For both conflict generating and solving the Hitting Set problem, we present 
new powerful methods that will enhance the performance of the Engine. 

These new technical innovations will solve the scalability problem of most existing 
diagnosis approaches. While the methods based on exhaustive search could not handle even 
medium size systems, the integer programming techniques usually could solve systems with 
thousands of variables. We seek to develop a diagnosis engine that is significantly faster, and 
scales more favorably, than state-of-the-art diagnosis engines. 



AN ALGORITHMIC APPROACH TO DIAGNOSIS PROBLEM 

To overcome the complexity of calculating minimal diagnosis set, we will utilize and 
expand our new discovery relating the calculation of minimal diagnosis set and solution of the 
Hitting Set Problem to the solution of Integer Programming and Boolean Satisfiability Problems 
[1,2]. Our primary interest to Hitting Set Problem is due to its connection with the problem of 
diagnosis. 

In order to describe the mapping of Hitting Set Problem onto Integer Programming, let us 
define a 0/1 (binary) matrix A (see Figure 3) as the incidence matrix of the collection of the 
conflict sets; Le., the entry aiF1 if and only if the jth element mj belongs to the ith set C i s  Let x = 
( X I ,  x 2 ,  . . . , x,,) be a binary vector, wherein Xj = 1 if the member mj belongs to the minimal hitting 
set and hence the minimal diagnosis set, otherwise Xj  = 0. It can be then shown [1,2] that we 
have the following formulation of the Hitting Set Problem as a 0/1 Integer Programming Problem: 

minimize x1 + x 2  + . . . + x,,, 
subject to Ax 2 6,  x j =  0, 1, 

where bT= (1,. . .,l) is a vector whose elements are all equal to one. This new mapping allows us 
to utilize existing efficient integer programming algorithms, permitting solution of problems with a 
much larger size. In fact, we have shown [i] that, even using commercially available Integer 
Programming tools, we can achieve a more efficient calculation of minimal diagnosis compared 
with the existing algorithms. 

A =  

Figure 3. Mapping hitting set problem onto integer programming 

BOUNDS ON DIAGNOSIS 

This new mapping offers two additional advantages that can be exploited to develop yet 
more efficient algorithms. First, note that this mapping represents a special case of Integer 
Programming Problem due to the structure of matrix A (binary matrix) and vector b. Second, by 
using this mapping, we can determine the minimum number of faulty components without solving 
the problem explicitly [1,2]. For this purpose, we consider the 1-norm and 2-norm of vectors 
defined as 

For the vector b in (l), we then have IbII, = m and 1b1I2 = & . Since the elements of both vectors 
Ax and b are positive, we can then drive the following two inequalities: 



Since x is a binary vector, then both norms in (2) give the bound on the size of the solution, that 
is, the number of nonzero elements of vector x which, indeed, corresponds to the minimal 
diagnosis set, Note that, depending on the structure of the problem, Le., the 1- and 2-norm of the 
matrix A and m, a sharper bound can be derived from either of (2). To our knowledge, this is the 
first time that such bounds on the solution of the problem have been derived without any need to 
explicitly solve the problem. Such a priori knowledge on the size of solution will be used for 
developing much more efficient algorithms for the problem. 

Furthermore, using monotonicity of the integer programming (1) we are able to find an 
upper bound for the solution size. Here by monotonicity we mean that if x is a solution of Ax 2 b 
and y 1 x then y is also a solution of the same system. Note that finding a 0/1 solution x for the 
system Ax 1 b is equivalent to finding a subset of the columns of the matrix A such that their 
sum is a vector with no zero component. Of course any such solution provides an upper bound 
for the optimization problem (l), since for that problem we are looking for a minimal set of such 
columns. 

Therefore, to find an upper bound, we first choose a column C1 of A with largest weight. 
Then we construct a submatrix of A by deleting the column C1 and all rows of A that correspond 
to non-zero components of C1. We apply the same process to the new matrix, until we end up 
with the empty matrix. The columns C1, CI,. . ., Ct that we obtain determines a solution for Ax 1 
b and the number t is an upper bound for the solution of the integer programming problem (1). 
Our initial test shows that the upper bound is actually sharp, particularly for small size solution 
(see Table 11). Note that it is easy to modify this algorithm in a way that the it also provides a 
vector u such that the vector Au realizes the corresponding upper bound. 

' upper-bound ( A )  
/* 

u1 1 
al c a maximum-weight column of A 
A1 c submatrix of A obtained by deleting the column u1 and all rows 

if A I  is the empty matrix return U1 

returns an upper bound for the solution of Ax 2 b */ 

of A that correspond to non-zero components of uI. 

else return U1 + upper-bound(A,) 
' end if 

Figure 4. A recursive procedure for computing the upper bound 

There are two simple rules that will help this algorithm in extreme cases. These rules also 
can be useful in other cases, as by the recursive nature of the algorithm, most likely the algorithm 
will ends up with submatrices that these rules can be applied. Here are the formulation of these 
rules: 

(I) If the matrix A has an all-one column, then the upper bound is equal to 1 ; 
(11) If some row of the matrix A has weight 1, then remove that row to obtain the matrix A1 

and upper-bound (A) = 1 + upper-bound (AI). 



We could also improve the upper bound by a step-by-step method and in an iterative 
fashion wherein the cost of kth step in the iteration is O(nk) so the first few steps are practically 
efficient. More specifically, for fix k, instead of choosing the maximum weight column for the 
vector al, we could choose the sum of k columns of A, and try all possible such vectors. 

17x21 
17x33 
159x25 

As another application of the a priori lower bound, before starting to solve the hard 
problem of finding the minimal hitting sets, we could separate the cases where the high number 
of faulty components requires another course of action instead of usual identification of faulty 
components. Also a good lower and upper bound could determine whether the enhanced brute- 
force algorithm can provide a solution efficiently. (This enhanced brute-force algorithm is 
described in [l] and has time complexity O(n'), where t is the number of faulty components.) 

6 7 3 
5 5 4 
4 4 2 

Table II. Upper and Lower Bounds 

23x38 
27x40 
21x60 

I 43x21 I 3 2 I 

6 6 4 
6 8 2 
7 8 6 

I 39x25 I 7 1 8 1  2 
21x38 5 1 5 1  3 

I 78x63 13 I 18 1 7 
94x76 16 I 22 I 8 
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A NEW BRANCH-AND-BOUND METHOD 

The branch-and-bound method is one of the most common methods for solving NP- 
complete problems. For the case of Integer Programming (IP) problem, this method begins by 
solving the Linear Programming (LP) relaxation of the IP; Le., by removing the condition that the 
variables Xj are integers. Figure 5 shows typical solution sets of the LP relaxation and IP grid 
inside this polygon represent problems, where the polygon represents the solution set of the LP 
relaxation and the points of the solution set of the IP problem. If the optimal solution of the LP 
relaxation consists only of integer values, then the optimal solution of the LP relaxation will be the 
optimal solution to the IP problem. Otherwise, if the IP problem is defined by a system like ( l ) ,  the 
optimal solution of the LP relaxation provides a lower bound for the IP problem. In this case, we 
choose one of the non-integer values of the optimal solution of the LP relaxation, say Xj = a, and 
define two new subproblems by adding the conditions Xj I [a] and Xj 1 [a]+l to the system, 
where [a] denotes the integer part of a. By continuing this procedure, we define subproblems of 
original IP problem. Once we find an integer optimal solution for the LP relaxation problem that 
gives us an upper bound for the IP problem. We eliminate any subproblem whose (LP relaxation) 
lower bound is bigger than upper bound provided by some other subproblem. We continue this 
procedure until all subproblems are eliminated or we find an integer optimal solution for the 
corresponding LP relaxation problem. At the end, the optimal solution for the IP problem is the 
best of the optimal integer solutions of the subproblems. 
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Figure 5. Solution sets of an Integer Programming problem and a corresponding Linear 
Programming relaxation problem 

We can simply generalize the above procedure as follows. To begin the branch-and- 
bound procedure, we need to have the capability to perform the following tasks: 

(a) Partitioning a problem P to a set PI, P2, . . . , Pk of mutually exclusive subproblems; 
(b) Finding a lower bound for each subproblem Pj; 
(c) Finding an integer solution for a subclass of subproblems (in this case we obtain an 

upper bound), we could also determine whether the integer solution is optimal for the 
corresponding subproblem. 

Note that in the case of LP relaxation, whenever we find an integer solution for a subproblem, it is 
guaranteed that it is an optimal solution for that subproblem. We now start with the original 
problem P ,  defined by a system like ( l ) ,  and in the mth step of the procedure we have a partition 
Pm,l, Pm,2, . . ., Pm,r of mutually exclusive subproblems. For each subproblem P m j  we find a lower 
bound L,,,i and, if possible, an integer solution and corresponding upper bound U,j. Then we 
decide which subproblems P m j  should be eliminated at this step. There are two criteria for this 
decision: 

(i) The lower bound L m j  is larger than some upper bound Um,k of some other subproblem 

(ii) An optimal solution for the subproblem P m j  is found. 
Pink 

In the case (ii) we keep the record of the best optimal solution of the subproblems. Then we apply 
the partitioning method (a) on the remaining subproblems and find lower and (if possible) upper 
bounds for the new subproblems. We continue this procedure until no subproblem remains. Then 
the best of the optimal solutions of subproblems is the optimal solution for the original problem. 

Our new branch-and-bound algorithm is based on our new methods for computing lower 
and upper bounds for diagnosis. We also exploit the monotonicity property of this special case of 
integer programming problem. Our method is based on the following methods to perform tasks 
required by the branch-andobound approach. 

(a) To partition a problem P defined by a matrix A of Figure 1, we choose a column C, with 
maximum weight. Then we define two subproblems PI and P2 by adding conditions Xj = 
0 and Xj = 1 to the system (l), respectively. The matrices A1 and A2 that define PI and 



P2 are constructed easily. The matrix A1 is obtained from A by deleting the column Cj, 
and the matrix A2 is obtained from A by deleting the column Cj and removing all rows of 
A that correspond to non-zero components of Cj. 

(b) We are able to calculate the lower bounds for the subproblems by the method described 
previously, using inequalities (2). 

(c) We are always able to find an upper bound for any subproblem, utilizing the method 
described by the algorithm of Figure 4. We find an optimal solution for the subproblem 
only in the case that the corresponding matrix has an all-one column. 

A NOVEL CONFLICT GENERATION ALGORITHM 

We propose a novel approach for generating conflict sets based on mapping this problem 
onto the well-studied problem of finding paths in a graph [5]. The main idea of this approach is 
based on the fact that only the value of observed parameters can produce the conflicts; Le., if the 
description of the system and the value of the inputs could imply a value different from the 
observed value. We should also consider the values that could be inferred from the observed 
values by the “back-propagation” method; i.e., the values that could be inferred at some node 
from the values observed at the other nodes. All subsystems that are involved in the process of 
finding these inferred values can be described as paths on the graph of the system. Therefore, to 
find all conflict sets, it is enough to consider only paths that start at inputs or nodes of observed 
values and end at one of these nodes. This approach can significantly accelerate the conflict 
generation step by bounding the search space, as it is shown by our preliminary study. The 
details of this method will be explained in the subsequent paper. 

SUMMARY AND CONCLUSIONS 

We proposed a two-folded approach to overcome the two major limitations of the current 
model-based diagnosis techniques, that is, the exhaustive search complexity of the conflict 
generating methods and the exponential complexity of calculation of minimal diagnosis set. To 
overcome the first limitation, we have developed a novel conflict generating algorithm. To 
overcome the second and more challenging limitation, we have proposed a novel algorithmic 
approach for calculation of minimal diagnosis set. Starting with the relationship between the 
calculation of minimal diagnosis set and the celebrated Hitting Set problem, we have proposed a 
new method for solving the Hitting Set Problem, and consequently the diagnosis problem. This 
method is based on a powerful yet simple representation of the problem that enables its mapping 
onto another well-known problem, that is, the 0/1 Integer Programming problem. 

The mapping onto 0/1 Integer Programming problem enables the use of variety of 
algorithms that can efficiently solve the problem for up to several thousand components. These 
new algorithms significantly improve over the existing ones, enabling efficient diagnosis of large 
complex systems. In addition, this mapping allows, for the first time, a priori determination of the 
lower and upper bounds on the solution, Le., the number of faulty components, before solving the 
problem. This is a powerful insight that can lead to yet more powerful algorithms for the problem. 
As an example we have demonstrated a new branch-and-bound algorithm for this special case of 
integer programming problem. The integration of these novel efficient methods enables the 
development of new tools that can efficiently diagnose large systems. 
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