
BLUEPRINT OF AN EFFICIENT MODEL-BASED DIAGNOSIS ENGINE*

A. Fijany and F. Vatan
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91 109

ABSTRACT

The most widely used approach to model-based diagnosis consists of a two-step process: (1)
Generating conflict sets from symptoms; (2) Calculating minimal diagnosis set from the conflicts.
Here a conflict set is a set of assumptions on the modes of some components that is not
consistent with the model of the system and observations, and a minimal diagnosis is a set of the
consistent assumptions of the modes of all components with minimal number of abnormal
components. However, there are major drawbacks in the current model-based diagnosis
techniques in efficiently performing the above two steps that severely limit their practical
application to many systems of interest. For conflict generating problem, these techniques are
usually based on different versions of Truth Maintenance (TM) method, which lead to exhaustive
search in the space of possible modes of the components. The most common method for finding
minimal diagnosis from the conflicts is based on Reiter’s algorithm [9], which requires both
exponential time and exponential space (memory) to be implemented.

In order to overcome these limitations, we propose a novel and two-fold approach: First,
we propose a new approach for generating conflict sets based on mapping this problem onto the
well-studied problem of finding paths in a graph [5]. This approach can significantly accelerate the
conflict generation step by bounding the search space and thus avoiding unnecessary search.
Second, we propose a novel algorithmic approach and a set of new algorithms for calculation of
minimal diagnosis set, which is an inherently intractable (NP-complete) problem [3]. However,
our new approach allows the development of new algorithms that enable more efficient solution
for large and realistic problems. More specifically, our new approach allows us to calculate the
lower and upper bounds on the size of the solution. Utilizing these new insights, we are able to
develop a new version of the branch-and-bound method for solving the problem.

INTRODUCTION

The diagnosis problem arises when some symptoms (anomalies) are observed, that is,
when system’s actual behavior contradict the expected behavior. System diagnosis is then the
task of identifying faulty components that are responsible for anomalous behavior. To solve the

Approved for public release, distribution is unlimited.

* This effort is performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under
contract with National Aeronautics and Space Administration (NASA) under the contract 101959- 4.01.

diagnosis problem, one must find the minimal set of faulty components that explain the observed
symptoms. The most disciplined technique to diagnosis is termed "model-based because it
employs knowledge of devices' operation and their connectivity in the form of models. This
approach [4] reasons from first principles and affords far better diagnostic coverage of a system
than traditional rule-based diagnosis methods, which are based on a collection of specific
symptom-to-suspect rules.

The diagnosis process starts with identifying symptoms that represent inconsistencies
(discrepancies) between the system's model (description) and the system's actual behavior. Each
symptom identifies a set of conflicting components as initial candidates. A minimal diagnosis is
the smallest set of components that intersects all conflict sets. The underlying general approach
in different model-based diagnosis approaches can be described as a two-step "divide-and-
conquer" technique wherein finding the minimal diagnosis set is accomplished in two steps: a)
Generating conflict sets from symptoms, and b) Calculating minimal diagnosis set from the
conflict sets. This two-step approach can be better described by considering the well-known
Hitting Set Problem. The problem is simply described as follows. A collection S = { SI, . . . , S,} of
nonempty subsets of a set M is given. A hitting set (or transversal) of S is a subset H of M that
meets every set in the collection S; i.e., Sj n H#@, for every j = 1, . . . , m. Of course, there are
always trivial hitting sets, for example the background set M is always a hitting set. Actually we
are interested in minimal hitting sets with minimal cardinalitfl a hitting set H is minimal if no
proper subset of H is a hitting set. In summary, the conflict generation corresponds to forming a
collection of sets, and calculating minimal diagnosis corresponds to the solution of the hitting set
problem for this collection (see Figure 1).

Figure 1. Diagnosis as the hitting set of conflict sets

However, there are major drawbacks in the current model-based diagnosis techniques in
efficiently performing the above two steps that severely limit their practical application to many
systems of interest. First, the existing conflict generating algorithms are all based on various
versions of constraint propagation method and truth maintenance systems. The problem with
these methods is that not only they need exponential time but usually they also require
exponential memory to be implemented. Therefore, these methods cannot handle realistic
systems with large number of components. Second, in order to find the minimal diagnosis set,
current model-based diagnosis techniques rely on algorithms with exponential computational cost
and hence are highly impractical for application to many systems of interest.

In this paper, we present a novel and two-fold approach for model-based diagnosis to
overcome the two above-mentioned limitations and to achieve a powerful engine, which can be
used for fast diagnosis of large and complex system. First we present a novel algorithmic
approach for calculation of minimal diagnosis set. We present a powerful yet simple
representation of the calculation of minimal diagnosis set. This representation enables the
mapping onto a well-known problem, that is, the 0/1 Integer Programming problem. The mapping
onto 0/1 Integer Programming problem enables the use of variety of algorithms that can efficiently
solve the problem for up to several thousand components. Therefore, these new algorithms

significantly improve over the existing ones, enabling efficient diagnosis of large complex
systems. In addition, this mapping allows, determination of the lower and upper bounds on the
solution, i.e., the minimum number of faulty components, before solving the problem. We exploit
this powerful insight to develop yet more powerful algorithm for the problem. This new algorithm
is a new version of the branch-and-bound method. Next, we propose a new approach for
generating conflict sets based on mapping this problem onto the well-studied problem of finding
paths in a graph [SI. This approach can significantly accelerate the conflict generation step by
bounding the search space and thus avoiding unnecessary search.

DIAGNOSIS ENGINE

The methods described in this paper are continuation of our previous work [l]. The result
of that effort was a new tool, Diagnosis Engine version 1.0. This engine is based on a novel and
compact reconstruction of General Diagnosis Engine (GDE), as one of the most fundamental
approaches to model-based diagnosis, and our novel algorithmic approach for calculation of
minimal diagnosis set. This tool, Diagnosis Engine version 1 .O, constitutes several components
so that it has the capability to an end-to-end diagnosis. The key components of the Engine are:

DescriDtion of the svstem. The first step of diagnosis process of a specific system is to
define the system. This step itself involves two stages. (i) We have to specify the
functionality of all possible components used by the system. Right now, the code we
have developed in LISP is capable of handling components in arithmetical (adder-
multiplier gates) and Boolean (logical gates) settings. Extending the LISP code to other
discrete settings is straightforward. (ii) We have to define the interconnections between
the components of the system. We have adapted a natural way to specify these
interconnections in the LISP code. The inputs and the observations of the system are
treated as part of system description, and are provided by this component.
Conflict findina Drocess. The conflict finding routine of version 1 .O of Engine is based on a
reconstruction of GDE method [lo]. The General Diagnostic Engine (GDE) is one of the
most fundamental approaches to model-based diagnosis. GDE combines a model of a
device with observations of its actual behavior to detect discrepancies and diagnose root
causes. However, GDE also suffers from the two main limitations of other model-based
diagnosis approach; that is, the complexity of software makes its application difficult, and
there is an exponential computational cost for finding the minimal set. In order to
overcome the first limitation we have developed a novel and compact reconstruction of
GDE. Traditionally GDE has been implemented using an inference engine to reason
about a device model combined with an Assumption-based Truth Maintenance System
(ATMS) to keep track of assumptions. A surprising result that arose from our rational
reconstruction of GDE involves merging the ATMS with the inference engine. It turns out
that the ATMS and the inference engine have many similarities, and combining the two
dramatically simplifies the algorithm. The resultant system was completely implemented
in under 150 lines of LISP code! The output of this component is a matrix A defining the
conflict sets (more details about this matrix in the next section).
lnteaer oroarammina solver. The conflict matrix A, that is the output of the conflict finding
routine, will be used to solve an integer programming problem. To this end, the Engine
has two methods in its disposal. One is an enhanced version of the brute force method
(see [l J for details). This method is very successful in the case of small number of faults.
We will describe it later. The other method is the GLPK GNU Linear Programming bit),
version 3.2. This is a set of routines in the ANSI C programming language. The integer
programming routine of GLPK (actually it is much more powerful routine and is capable of
solving mixed integer programming problems) applies a variant of branch-and-bound
method for the problem. The GLPK, like other available integer programming solver tools,
provides only one solution. The Engine has capability of finding all possible solution of.

0

As the first stage of benchmarking and validation of the tool, we applied our engine on test cases
of circuits with adder and multiplier gates (Figure 2 shows one such circuit). The following tables
show the results of these experiments.

Table 1. Some of the Results of Benchmarking

-~ a , - 1
105 I 12xluS I 3 I < 1 SEC. I

I 10x105 I 2 I < 1 SEC.
I ^ _

05 - I

105 12x105 4 < 1 SEC.
105 17x105 5 < 1 SEC.
105 23x105 6 2 SEC.

Multiplier gate

Q Adder gate

Figure 2. A 105-gate circuit

The algorithms discussed in this paper are in fact improvements of methods utilized by
the above Engine. For both conflict generating and solving the Hitting Set problem, we present
new powerful methods that will enhance the performance of the Engine.

These new technical innovations will solve the scalability problem of most existing
diagnosis approaches. While the methods based on exhaustive search could not handle even
medium size systems, the integer programming techniques usually could solve systems with
thousands of variables. We seek to develop a diagnosis engine that is significantly faster, and
scales more favorably, than state-of-the-art diagnosis engines.

AN ALGORITHMIC APPROACH TO DIAGNOSIS PROBLEM

To overcome the complexity of calculating minimal diagnosis set, we will utilize and
expand our new discovery relating the calculation of minimal diagnosis set and solution of the
Hitting Set Problem to the solution of Integer Programming and Boolean Satisfiability Problems
[1,2]. Our primary interest to Hitting Set Problem is due to its connection with the problem of
diagnosis.

In order to describe the mapping of Hitting Set Problem onto Integer Programming, let us
define a 0/1 (binary) matrix A (see Figure 3) as the incidence matrix of the collection of the
conflict sets; Le., the entry aiF1 if and only if the jth element mj belongs to the ith set C i s Let x =
(X I , x 2 , . . . , x,,) be a binary vector, wherein Xj = 1 if the member mj belongs to the minimal hitting
set and hence the minimal diagnosis set, otherwise Xj = 0. It can be then shown [1,2] that we
have the following formulation of the Hitting Set Problem as a 0/1 Integer Programming Problem:

minimize x1 + x 2 + . . . + x,,,
subject to Ax 2 6, x j = 0, 1,

where bT= (1,. . .,l) is a vector whose elements are all equal to one. This new mapping allows us
to utilize existing efficient integer programming algorithms, permitting solution of problems with a
much larger size. In fact, we have shown [i] that, even using commercially available Integer
Programming tools, we can achieve a more efficient calculation of minimal diagnosis compared
with the existing algorithms.

A =

Figure 3. Mapping hitting set problem onto integer programming

BOUNDS ON DIAGNOSIS

This new mapping offers two additional advantages that can be exploited to develop yet
more efficient algorithms. First, note that this mapping represents a special case of Integer
Programming Problem due to the structure of matrix A (binary matrix) and vector b. Second, by
using this mapping, we can determine the minimum number of faulty components without solving
the problem explicitly [1,2]. For this purpose, we consider the 1-norm and 2-norm of vectors
defined as

For the vector b in (l), we then have IbII, = m and 1b1I2 = & . Since the elements of both vectors
Ax and b are positive, we can then drive the following two inequalities:

Since x is a binary vector, then both norms in (2) give the bound on the size of the solution, that
is, the number of nonzero elements of vector x which, indeed, corresponds to the minimal
diagnosis set, Note that, depending on the structure of the problem, Le., the 1- and 2-norm of the
matrix A and m, a sharper bound can be derived from either of (2). To our knowledge, this is the
first time that such bounds on the solution of the problem have been derived without any need to
explicitly solve the problem. Such a priori knowledge on the size of solution will be used for
developing much more efficient algorithms for the problem.

Furthermore, using monotonicity of the integer programming (1) we are able to find an
upper bound for the solution size. Here by monotonicity we mean that if x is a solution of Ax 2 b
and y 1 x then y is also a solution of the same system. Note that finding a 0/1 solution x for the
system Ax 1 b is equivalent to finding a subset of the columns of the matrix A such that their
sum is a vector with no zero component. Of course any such solution provides an upper bound
for the optimization problem (l), since for that problem we are looking for a minimal set of such
columns.

Therefore, to find an upper bound, we first choose a column C1 of A with largest weight.
Then we construct a submatrix of A by deleting the column C1 and all rows of A that correspond
to non-zero components of C1. We apply the same process to the new matrix, until we end up
with the empty matrix. The columns C1, CI,. . ., Ct that we obtain determines a solution for Ax 1
b and the number t is an upper bound for the solution of the integer programming problem (1).
Our initial test shows that the upper bound is actually sharp, particularly for small size solution
(see Table 11). Note that it is easy to modify this algorithm in a way that the it also provides a
vector u such that the vector Au realizes the corresponding upper bound.

' upper-bound (A)
/*

u1 1
al c a maximum-weight column of A
A1 c submatrix of A obtained by deleting the column u1 and all rows

if A I is the empty matrix return U1

returns an upper bound for the solution of Ax 2 b */

of A that correspond to non-zero components of uI.

else return U1 + upper-bound(A,)
' end if

Figure 4. A recursive procedure for computing the upper bound

There are two simple rules that will help this algorithm in extreme cases. These rules also
can be useful in other cases, as by the recursive nature of the algorithm, most likely the algorithm
will ends up with submatrices that these rules can be applied. Here are the formulation of these
rules:

(I) If the matrix A has an all-one column, then the upper bound is equal to 1 ;
(11) If some row of the matrix A has weight 1, then remove that row to obtain the matrix A1

and upper-bound (A) = 1 + upper-bound (AI).

We could also improve the upper bound by a step-by-step method and in an iterative
fashion wherein the cost of kth step in the iteration is O(nk) so the first few steps are practically
efficient. More specifically, for fix k, instead of choosing the maximum weight column for the
vector al, we could choose the sum of k columns of A, and try all possible such vectors.

17x21
17x33
159x25

As another application of the a priori lower bound, before starting to solve the hard
problem of finding the minimal hitting sets, we could separate the cases where the high number
of faulty components requires another course of action instead of usual identification of faulty
components. Also a good lower and upper bound could determine whether the enhanced brute-
force algorithm can provide a solution efficiently. (This enhanced brute-force algorithm is
described in [l] and has time complexity O(n'), where t is the number of faulty components.)

6 7 3
5 5 4
4 4 2

Table II. Upper and Lower Bounds

23x38
27x40
21x60

I 43x21 I 3 2 I

6 6 4
6 8 2
7 8 6

I 39x25 I 7 1 8 1 2
21x38 5 1 5 1 3

I 78x63 13 I 18 1 7
94x76 16 I 22 I 8

~~~ 

A NEW BRANCH-AND-BOUND METHOD 

The branch-and-bound method is one of the most common methods for solving NP- 
complete problems. For the case of Integer Programming (IP) problem, this method begins by 
solving the Linear Programming (LP) relaxation of the IP; Le., by removing the condition that the 
variables Xj are integers. Figure 5 shows typical solution sets of the LP relaxation and IP grid 
inside this polygon represent problems, where the polygon represents the solution set of the LP 
relaxation and the points of the solution set of the IP problem. If the optimal solution of the LP 
relaxation consists only of integer values, then the optimal solution of the LP relaxation will be the 
optimal solution to the IP problem. Otherwise, if the IP problem is defined by a system like ( l ) ,  the 
optimal solution of the LP relaxation provides a lower bound for the IP problem. In this case, we 
choose one of the non-integer values of the optimal solution of the LP relaxation, say Xj = a, and 
define two new subproblems by adding the conditions Xj I [a] and Xj 1 [a]+l to the system, 
where [a] denotes the integer part of a. By continuing this procedure, we define subproblems of 
original IP problem. Once we find an integer optimal solution for the LP relaxation problem that 
gives us an upper bound for the IP problem. We eliminate any subproblem whose (LP relaxation) 
lower bound is bigger than upper bound provided by some other subproblem. We continue this 
procedure until all subproblems are eliminated or we find an integer optimal solution for the 
corresponding LP relaxation problem. At the end, the optimal solution for the IP problem is the 
best of the optimal integer solutions of the subproblems. 



I . . . . . . .  

e . .  

e . . . .  

Figure 5. Solution sets of an Integer Programming problem and a corresponding Linear 
Programming relaxation problem 

We can simply generalize the above procedure as follows. To begin the branch-and- 
bound procedure, we need to have the capability to perform the following tasks: 

(a) Partitioning a problem P to a set PI, P2, . . . , Pk of mutually exclusive subproblems; 
(b) Finding a lower bound for each subproblem Pj; 
(c) Finding an integer solution for a subclass of subproblems (in this case we obtain an 

upper bound), we could also determine whether the integer solution is optimal for the 
corresponding subproblem. 

Note that in the case of LP relaxation, whenever we find an integer solution for a subproblem, it is 
guaranteed that it is an optimal solution for that subproblem. We now start with the original 
problem P ,  defined by a system like ( l ) ,  and in the mth step of the procedure we have a partition 
Pm,l, Pm,2, . . ., Pm,r of mutually exclusive subproblems. For each subproblem P m j  we find a lower 
bound L,,,i and, if possible, an integer solution and corresponding upper bound U,j. Then we 
decide which subproblems P m j  should be eliminated at this step. There are two criteria for this 
decision: 

(i) The lower bound L m j  is larger than some upper bound Um,k of some other subproblem 

(ii) An optimal solution for the subproblem P m j  is found. 
Pink 

In the case (ii) we keep the record of the best optimal solution of the subproblems. Then we apply 
the partitioning method (a) on the remaining subproblems and find lower and (if possible) upper 
bounds for the new subproblems. We continue this procedure until no subproblem remains. Then 
the best of the optimal solutions of subproblems is the optimal solution for the original problem. 

Our new branch-and-bound algorithm is based on our new methods for computing lower 
and upper bounds for diagnosis. We also exploit the monotonicity property of this special case of 
integer programming problem. Our method is based on the following methods to perform tasks 
required by the branch-andobound approach. 

(a) To partition a problem P defined by a matrix A of Figure 1, we choose a column C, with 
maximum weight. Then we define two subproblems PI and P2 by adding conditions Xj = 
0 and Xj = 1 to the system (l), respectively. The matrices A1 and A2 that define PI and 



P2 are constructed easily. The matrix A1 is obtained from A by deleting the column Cj, 
and the matrix A2 is obtained from A by deleting the column Cj and removing all rows of 
A that correspond to non-zero components of Cj. 

(b) We are able to calculate the lower bounds for the subproblems by the method described 
previously, using inequalities (2). 

(c) We are always able to find an upper bound for any subproblem, utilizing the method 
described by the algorithm of Figure 4. We find an optimal solution for the subproblem 
only in the case that the corresponding matrix has an all-one column. 

A NOVEL CONFLICT GENERATION ALGORITHM 

We propose a novel approach for generating conflict sets based on mapping this problem 
onto the well-studied problem of finding paths in a graph [5]. The main idea of this approach is 
based on the fact that only the value of observed parameters can produce the conflicts; Le., if the 
description of the system and the value of the inputs could imply a value different from the 
observed value. We should also consider the values that could be inferred from the observed 
values by the “back-propagation” method; i.e., the values that could be inferred at some node 
from the values observed at the other nodes. All subsystems that are involved in the process of 
finding these inferred values can be described as paths on the graph of the system. Therefore, to 
find all conflict sets, it is enough to consider only paths that start at inputs or nodes of observed 
values and end at one of these nodes. This approach can significantly accelerate the conflict 
generation step by bounding the search space, as it is shown by our preliminary study. The 
details of this method will be explained in the subsequent paper. 

SUMMARY AND CONCLUSIONS 

We proposed a two-folded approach to overcome the two major limitations of the current 
model-based diagnosis techniques, that is, the exhaustive search complexity of the conflict 
generating methods and the exponential complexity of calculation of minimal diagnosis set. To 
overcome the first limitation, we have developed a novel conflict generating algorithm. To 
overcome the second and more challenging limitation, we have proposed a novel algorithmic 
approach for calculation of minimal diagnosis set. Starting with the relationship between the 
calculation of minimal diagnosis set and the celebrated Hitting Set problem, we have proposed a 
new method for solving the Hitting Set Problem, and consequently the diagnosis problem. This 
method is based on a powerful yet simple representation of the problem that enables its mapping 
onto another well-known problem, that is, the 0/1 Integer Programming problem. 

The mapping onto 0/1 Integer Programming problem enables the use of variety of 
algorithms that can efficiently solve the problem for up to several thousand components. These 
new algorithms significantly improve over the existing ones, enabling efficient diagnosis of large 
complex systems. In addition, this mapping allows, for the first time, a priori determination of the 
lower and upper bounds on the solution, Le., the number of faulty components, before solving the 
problem. This is a powerful insight that can lead to yet more powerful algorithms for the problem. 
As an example we have demonstrated a new branch-and-bound algorithm for this special case of 
integer programming problem. The integration of these novel efficient methods enables the 
development of new tools that can efficiently diagnose large systems. 

REFERENCES 

[I] A. Fijany, F. Vatan, A. Barrett, M. James, C. Williams, and R. Mackey, A novel model-based 
diagnosis engine: Theory and Applications, 2003 /E€€ Aerospace Conference, 2003. 

[2] A. Fijany, F. Vatan, A. Barrett, and R. Mackey, New approaches for solving the diagnosis 
problem, The JPL interplanetary Network (/PA/) progress Report, 42-1 49, May 2002. 

[3] F. Vatan, The complexity of diagnosis problem, NASA Tech Briefs, vol. 26, p. 20, 2002. 



[4] J. de Kleer, A. K. Mackworth, and R. Reiter, Characterizing diagnoses and systems, ArlificiaI 

[5] G. Rote, Path problems in graphs, Computing, vol. 7, pp. 155-1 89, 1990. 
[6] T. Hogg and C. Williams, Solving the really hard problems with cooperative search, Proc. of 

[7] B.C. Williams and P. Nayak, A model-based approach to reactive self-configuring systems, 

[8] S. Chung, J.V. Eepoel, and B.C. Williams, Improving model-based mode estimation through 

[9] F. Wotawa, A variant of Reiter's hitting-set algorithm, Information Processing Letters 79, 45- 

[lo] J. de Kleer and B. Williams, Diagnosing Multiple Faults, Readings in Model-Based Diagnosis, 

Inte//jgence, 56, 197-222, 1992. 

AAAI-93, pp. 231 -236, 1993. 

froc. iyh #at. Conf. Artif. Intell. (AAAI-96), pp. 971-978, 1996. 

off line compilation, Int. Symp. Artif. Intell., Robotics, Automation Space (ISA/RAS-O1), 2001. 

51,2001. 

Morgan Kaufmann Publishers, San Mateo, CA, 1992. 




