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ABSTRACT 

Project cost risk is the uncertainty in final 
project cost, contingent on initial budget, 
requirements and schedule. For a proposed 
mission, a dynamic simulation model relying for 
some of its input on a simple risk elicitation is used 
to identify and quantify systemic cost risk. In 
addition, we display in a simple tree the 
relationship of the new proposed mission to 
historical missions. The tree is constructed by 
cluster analysis, a data mining technique for 
identifying similar objects based on a simple 
measure of the similarity between two missions. 
The cost history of missions identified by cluster 
analysis as closest to the proposed mission are used 
to modify the systemic cost risk. A case study 
demonstrates this approach to the early evaluation 
of total cost risk for proposed spaceflight projects. 

INTRODUCTION 

Cluster analysis is a data mining techmque for 
identifying similar objects, represented as records 
in a database of common attributes. We classify 
and display, in a simple tree, the relationship of a 
new proposed mission to historical missions in a 
database of system attributes such as spacecraft 
mass, development duration and cost and mission 
operations period. Missions are grouped by 
defining, then comparing, the separation between 
sets of missions, based on a simple measure of the 
similarity, or distance, between missions. This 
grouping is used to identify missions similar to the 
proposed mission. For the proposed mission, 
simple cost risk elicitation is used to identify and 
quantify any systemic cost risk, i.e. potential cost 
changes that arise from project tasks, not from 
external causes. The historical missions identified 
by cluster analysis as closest to the proposed 
mission are used to estimate the ratio of total cost 
risk to internal cost risk and ths  factor is used to 
modify the internal cost risk simulation of the 
proposed mission. The following sections present 
our cost risk and cluster analysis methodology and 
a simple case study illustrating their use. 

ESTIMATING COST RISK 

The traditional NASA cost estimation process 
used for early assessment of cost risk for proposed 
spaceflight projects is based on historical data and 
uses simple regression models with system level 
characteristics, such as mass and peak power 
supplied, used as explanatory variables to estimate 
final costs and model uncertainty. This approach 
implicitly assumes a static world, where the only 
source of data is typically at mission completion. 
Costs are adjusted for average resource inflation to 
correct for chronology, but the dynamic evolution 
to final cost is not modeled. Both the proposed 
mission and missions used in the historical 
database are assumed to be homogeneous with 
respect to explanatory variables and are assumed to 
have the characteristics of a random sample of 
missions selected from a hypothetical universe of 
feasible missions. None of these implicit 
assumptions have real world validity. Furthermore, 
cost risk is taken to be the uncertainty in model fit. 
In fact, that measure captures observational error, 
confoundmg effects among mission characteristics 
and model misspecification. It cannot be expected 
to be a credible predictor of cost risk for a 
proposed mission. 

Historical cost and performance data for space 
missions and spacecraft are typically extracted, 
analyzed and revised after a program is completed. 
Data collection takes place during actual 
development and operation, but it is rare that a 
sufficiently complete cost history is maintained and 
retained. This lack of necessary information 
prevents explicit explanatory modeling of dynamic 
project cost. Another source of information loss 
with historical data is that a project WBS is often 
based on performing organization structure rather 
than the subsystems, components, tasks and their 
interfaces. This hides the true realization of 
component and task cost and the relationships 
among them. Information about elements common 
to more than one subsystem is typically recorded 
arbitrarily in any one of the common subsystems, 
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so correct assignment of cost is further obscured. 
This can be a significant source of error when 
using technical parameters at the subsystem level 
to explain system cost. Due to the unique nature of 
spaceflight missions and the evolving technology 
employed, the cost and performance tradeoffs 
among subsystems in a new mission are rarely 
duplicated from historical missions. It is precisely 
these potentially synergistic trades which reduce 
total system cost. Many spaceflight projects evolve 
over decades, from initial proposed concept to 
completion of operations; inflation is not uniform 
in its effects on resource costs over time, especially 
for these long periods. The varied pace of technical 
progress is another confounding factor, e.g. 
Moore’s Law, that invalidates static models. Even 
if these confounding effects, typical of historical 
cost data, were to be absent, there is a fundamental 
problem with using such data for predicting 
spaceflight project cost risk. At best, historical cost 
observations, taken to be final cost values, capture 
the historical development path dependence of cost 
for a project. Except under the uninteresting 
hypothetical circumstance where (1) No missions 
in the cost database experienced unusual historical 
development anomalies with respect to cost, (2) 
The database is free of confounding effects and (3) 
Systemic effects, after observed costs are corrected 
for externalities, are homogenous, historical cost 
model CERs (with model uncertainty) alone cannot 
be used to predict cost risk for a proposed 
spaceflight project. 

True, a priori, project cost risk is the 
uncertainty in final project cost, contingent on 
initial budget, requirements and schedule. This 
pressure on cost results from the dynamic 
interaction of schedule and technical performance 
risk and the evolving funding negotiation and 
commitment environment, i.e. the institutional 
constraints under which project development and 
eventual mission operation unfold. The current 
computational power of desktop computing opens 
the door to the use of inexpensive but realistic 
simulations of this dynamic project cost generation 
process. We have developed just such a 
methodological framework with two goals in mind: 
(1) The data requirements should be the minimum 
necessary to support realistic cost and cost risk 
estimates, (2) The models should be transparent to 
the user, i.e. effects should be traceable to causes. 
We have developed a cost risk model, consistent 
with those goals, that relies on parsimonious input 
information, yet captures the dynamic aspects 
essential to characterizing systemic spaceflight 

project cost risk. The modeling information 
required is (1) a high level Work Breakdown 
Structure (WBS) with budgets assigned to each 
task and, (2) for each task with significant risk, a 
pessimistic cost estimate that is elicited from 
knowledgeable technical experts. The experts for 
each task are asked to provide a 99th percentile 
cost estimate for the task, called the pessimistic 
cost, conditional on the initial budget, schedule and 
required technical performance. All tasks are 
assumed to finish on schedule, all receivables and 
deliverables are supplied and the required technical 
performance is achieved. This information is input 
to a simple dynamic model of cost commitment 
evolution that is evaluated by Monte Carlo 
simulation. Thus, the information developed in the 
initial budget estimation and plan development is 
used to propagate potential cost changes to a final 
cost probability distribution function (S-curve). 
The initial budget is relevant only to the extent that 
it is a starting point for evolving project cost 
commitments. Alternative initial budgets can lead 
to different final cost S-curves. It is useful to 
perform this budget sensitivity exercise in order to 
gauge the impact of the initial budget on cost risk. 
The basic dynamic model has been extended to 
include (1) the impact on cost risk of initial budget 
misspecification, where available funding is 
significantly lower than that necessary for 
successful project completion, and (2) project 
schedule slips resulting from intertask schedule 
precedence relationships and uncertain task 
completion dates. That extended model is 
presented in another paper in this volume, 
“Dynamic Cost Risk Estimation and Budget 
Misspecification”, by D. Ebbeler, G. Fox and H. 
Habib-agahi. 

Pessimistic task cost estimation by 
knowledgeable technical experts drives the 
systemic cost risk estimate. In this paper we will 
show how cluster analysis of the attributes of a 
historical mission database can be used to 
conjecture a total cost risk S-curve for a proposed 
mission, given the S-curve characterizing systemic 
risk for the proposed mission. 
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the technical variables dry mass, launched mass 
and cruise duration. These 16 were winnowed 
down from a much larger set by a process of 
eliminating fields with missing values and fields 
deemed highly correlated with the 16 remaining 
variables. No subsystem information was included 
in the resulting database. Table 1 displays the final 
mission attributes selected. 

CLUSTERING A DATABASE OF 
HISTORICAL MISSIONS 

For our cluster analysis inputs we used a data 
base of 20 historical and ongoing JPL missions 
with 16 mission attributes including programmatic 
variables such as development phase (A, B, C/D, 
E) durations, costs and JPL labor work-years, plus 

Phase A 
Duration 
(Months) 
Phase B 
Duration 
(Months) 

Phase C/D 
Duration 
(Months) 
Phase E 

Phase A/B Cruise Duratior Phase A/B 
Cost JPL Labor 

($M-FYOI) (wk-years) 
Phase C/D Phase C/D Dry Mass 

cost JPL Labor 

(Years) 

($M-FYOI) (wk-years) (kg) 

Phase E Total Launched Phase E 
cost 

($M-FYOI) (wk-years) JpL Labor Mass (kg) 

Phase (A-E) Total JPL Total Cost 

I I Duration cost Labor ind. Launch 
(Months) ($M-FYOI) (wk-years) ($M-FYOI) 

Table 1. Spaceflight Mission Attributes used in Clustering 
Mars Pathfinder 
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Figure 1. Phylogram Format for Spaceflight Mission Clustering 
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Figure 2: Unrooted Tree Format for the Same Spaceflight Mission Clustering 

Clustering requires a similarity metric to be 
defined between objects; we use a dissimilarity 
measure to the same effect. We selected a 
Euclidean metric in the 16-dimensional log space 
(real numbers) of the attribute values. The metric is 
also referred to as the distance between missions. 

d(x7y) = (XA ( ~ ( A X / A ~ ) ) ~ ) ’ ’ ~  
where x and y are missions, A, and A, are attribute 
A values for missions x and y (log is the natural 
logarithm) 

Like the Euclidean metric in the 2-D plane or 
the 3-D space we inhabit, the distance is always 
non-negative. The log transformation acts 
approximately like taking the percent difference 
between attributes and using that as the distance 
between them, e.g. a mission with a 5% higher cost 
than a reference mission is closer to the reference 
mission than is a mission with a 10% higher cost 
than the reference mission. For small deviations the 
effect is linear when using the log function. 
Between attributes, the Euclidean metric enforces 
an egalitarianism between dimensions, i.e. a 10% 
distance in one attribute dimension has the same 
impact as a 10% distance in another. 

There are a number of different clustering 
methods, each with its own special effect on the 
distance matrix that translates into different cluster 
characteristics. In our case we chose a method 

\ 

\\ \ 
Voyager 

called Complete Clustering to define the distance 
between clusters, i.e. the distance between two 
clusters is the maximum distance found from all 
possible pairs of elements, one selected from each 
cluster. 

d(S,T) = max d(x,y) 
where XES and YET, S and T are clusters. 

Complete Clustering results in clumps of bushy 
clusters rather than the long strings of missions 
obtained in Single Link Clustering. 

There are many commercial and public domain 
tools available to do the clustering, using as input 
the distances between missions. In addition, many 
statistical packages can execute the Simple and 
Complete Clustering algorithms. We used Data 
Desk 6.1 for the clustering and PhyloDraw 
(Department of Computer Science, Pusan National 
University, Pusan, Korea) for the display of cluster 
trees. 

A DYNAMIC COST RISK MODEL 

Our approach to modeling cost risk is to begin 
with the hct ional  decomposition of the mission 
development and operations into the activities used 
in the construction of the initial budget. An 
associated cost probability distribution is generated 
for each activity in that decomposition. Cost risk is 
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characterized by the cost probability distribution 
formed by combining cost probability distributions 
for individual activities. 

The knowledge and experience of experts is 
used to ascertain the activities for which cost 
volatility needs to be considered and those that can 
be approximated as fixed. For each of those 
activities that contribute to cost risk, we will 
construct a model of systemic risk constrained by 
the NASA principal-agent management structure, 
contingent on a correctly specified initial budget. 
When total cost risk is to be estimated, the impact 
of external shocks is treated as a multiplier of the 
systemic cost realization of each relevant WBS 
element calculated during Monte Carlo simulation 
of the model. 

For each activity cost risk element, for a fixed 
schedule and performance requirements, systemic 
cost uncertainty is the consequence of a sequence 
of random events whose cost impacts can be 
described by a time dependent stochastic (Wiener) 
process; that is, incremental departures from a 
correctly specified initial activity budget are 
normally distributed. Under the NASA principal- 
agent management structure, the rational behavior 
of project management reacting to such events 
implies that systemic costs will never fall below 
the initial activity budget. The Wiener model with 
this constraint produces a systemic cost evolution 
equivalent to a random walk with a non-absorbing 
boundary constraint. It can be described by the 
stochastic difference equation 

dC(t) = aC(t)dt + s-C(t)dw with constraint dC(t) 2 
aC(t)dt for te[O,T] 

Choice of the units for t is application dependent. 
Assuming t is measured in years, 

C(t) = predicted cost at time t in year t dollars 
C(0) = initial activity budget estimate in base year 
dollars 
a = inflation rate (%/year) 
s = volatility parameter (%/year) 
T = activity duration (years) 
dw = a random variable distributed N(O,dt), i.e. dw 
is normally distributed with mean zero and 
variance dt 

In order to determine the volatility parameter for 
the Wiener process corresponding to an activity 
cost evolution, it is mathematically sufficient to 

elicit an estimate of any percentile of the potential 
cost overrun for that activity. 

For each activity with volatile cost, it is 
proposed that an estimate of the 99th percentile 
cost overrun for that element, conditional on a 
schedule and nominal budget, be elicited. The 
estimates are elicited from cognizant individuals 
for each such activity. The 99th percentile means 
that the cognizant individuals judge, given a 
schedule and nominal budget that do not change, 
that there is only a 1% chance of exceeding the 
elicited value. Elicitation is preferred because our 
focus is on capturing past experience together with 
knowledge about the specific task and any 
conditions that may make the anticipated bounds 
differ from the past. 1% was selected because it is 
sufficiently large that the corresponding cost 
overrun is still of plausible likelihood of 
occurrence. The Wiener process volatility 
parameters are determined empirically by 
calibrating the Monte Carlo simulations so that 
each simulated cost 99% value is approximated by 
the corresponding elicited 99% value. 

ILLUSTRATION FOR A PROPOSED 
SPACEFLIGHT MISSION 

Two proposed missions were analyzed for total 
cost risk using cluster analysis to determine 
potential analogy missions using the following 
steps. A development plan, including task budgets 
and schedules, was provided to us by each proposal 
team. This is a standard product developed by all 
proposal teams. Next, after determining the 
appropriate WBS level to estimate, pessimistic 
costs for each significant risk task were elicited 
from the proposal team using explicit instructions 
we developed and provided in an Excel worksheet. 

The proposal team developed values for the 16 
programmatic variables in Table 1 above for each 
proposed mission. Most, if not all, of these values 
will have been identified when developing the 
program plan. Clustering is then performed on the 
expanded database. Figure 3 shows the results of 
clustering the two proposed missions we wished to 
evaluate. It’s useful to compare the old cluster tree 
without the new missions to the new tree to see if 
any clusters have changed. Major changes may 
indicate an anomaly in the new or existing 
missions, which should be investigated further. 
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Figure 3 seems to show that our two proposed missions are probably minor variations on a theme. 

JASON 1 
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Global 
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Figure 3. Cluster Tree of Spaceflight Mission Database and New Proposed Missions 

Cluster analysis identified a mission, labeled in 
Figure 3 as the "Closest Analogy", that is near the 
two proposed missions. The quantitative analysis 
charts in Figure 4 show the normalized values of 

the 16 attributes for the analogy mission and the 5 
additional missions in the large cluster in the lower 
left quadrant in Figure 3. 

Cluster Analysis 

Parameter Name 

Figure 4. Quantitative Comparison of Attributes for Example Mission and Analogous Missions 

In the case of the closest analogy mission, the example mission #1 to calculate total cost risk and 
total cost overrun was attributed to a single WBS reran the analysis, the results of which are 
element and the external overrun was 60% of that illustrated in Figure 5. A similar figure was also 
total cost overrun. We scaled the cost risk generated for example mission #2, but is not 
distribution for the relevant WBS element in included in this paper. 
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Figure 5. Systemic and Total Cost Risk for Example Mission #1. 

CONCLUSIONS ACKNOWLEDGMENT 

Our example relates systemic cost risk to total The research described in this publication was 
cost risk, which includes the effects of potential carried out at the Jet Propulsion Laboratory, 
external cost risk. Projects should not, however, be California Institute of Technology, under a contract 
held accountable for risks beyond their control. with the National Aeronautics and Space 
The information provided by the total cost risk S- Administration Cost Analysis Division. 
curve is an early warning to the fimding agency of 
potential cost overruns and could be usefil in its 
higher level planning which includes other projects 
and programs competing for scarce funds. 

As illustrated by our example, cluster analysis 
can be a useful addition to the cost analyst’s 
toolbox, used to identify and estimate spaceflight 
project cost risk based on a historical database of 
past missions, 
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