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OPTIMAL LOW-THRUST ORBITAL TRANSFERS 
AROUND A ROTATING NON-SPHERICAL BODY 

Gregory J. Whiffen* 

The NASA Discovery Program mission named DAWN will launch in 
2006 to orbit the two giant asteroids Vesta and Ceres. The DAWN space- 
craft will use solar-electric propulsion for both the inter-planetary cruise 
and orbital operations at each asteroid. A method is required to  design 
low-thrust orbital transfers between the science orbits given the complex 
gravity fields of both asteroids. This paper describes a technique for com- 
puting optimal low-thrust transfers in an arbitrarily complex, gravity field 
of a rotating body. Optimal transfers involving point mass models are 
compared to optimal transfers in increasingly complex gravity fields. The 
method is applied to a transfer between a high orbit and a low orbit with 
a plane change around the Asteroid Vesta using real mission constraints. 
Vesta’s gravity is modeled with a harmonic expansion of order twenty. The 
Static/Dynamic Control algorithm is used to solve the optimal control prob- 
lem. 

INTRODUCTION 

The NASA Discovery Program mission named DAWN will be launched in 2006 to orbit the two 
giant asteroids Vesta and Ceres. The two asteroids are so large (530 km and 960 km in diameter, 
respectively) that they are often referred to as “protoplanets”. Both Vesta and Ceres orbit the Sun 
in the asteroid belt between Mars and Jupiter. Vesta and Ceres are baby planets whose growth was 
disrupted by the formation of Jupiter. Vesta and Ceres have different characteristics and formed at 
different distances from the Sun. Vesta orbits the Sun at approximately 2.3 A.U. while Ceres’ orbit 
extends out to nearly 3 A.U. Vesta has evolved (differentiated) and it is dry. Ceres, in contrast, is 
primitive and icy. 

The DAWN spacecraft will use solar-electric propulsion for the inter-planetary cruise, asteroid 
capture, and orbital operations at each asteroid. Several science orbits are planned at each as- 
teroid. Low-thrust control combined with the complex gravity of a rotating asteroid results in a 
new and challenging design problem. Optimizing low-thrust trajectories is well known to be inher- 
ently difficult. Accounting for the complex gravitational field further compounds the optimization 
complexity. 

A method is required to design low-thrust orbital transfers at each asteroid. Existing techniques 
for computing optimal low-thrust orbital transfers do not account for highly non-spherical gravity1i9. 
Orbital motion near asteroids is not accurately described by classical theories for motion around 
spheroidal (oblate) bodies. In general, numerical integration is required to  adequately resolve the 
motion of a satellite orbiting near an asteroid. 

The question of orbital stability around asteroids has been investigated numerically’. Generally, 
science orbits will be selected that are relatively stable (requiring little or no station keeping). 
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However, transfers between science orbits may not be able to  avoid passing through both unstable 
orbital states and stable states with widely oscillating classical elements. This is not entirely bad. A 
desirable aspect of these intermediate orbital states is that they result in radical changes in the orbit 
in a short time or for little propellant cost. If these states are selected properly, then a desired orbital 
transfer can be achieved very quickly and efficiently. This idea is not new, it has been proposed in the 
context of asteroids and 3-body systems. The idea is to use adjacent stable and unstable manifolds 
of (quasi-) periodic orbits to  create efficient orbital transfers3. However, it is not always clear how 
to implement this idea. Important families of orbital states can easily remain undiscovered. 

Rather than try to discover and piece together various orbital families, a different approach is 
developed in this paper. An optimal control problem is formulated and solved to minimize the pro- 
pellant required to achieve an arbitrary orbital transfer around an asteroid. If the problem is solved 
correctly, then the resulting trajectory will use an optimal sequence of stable and unstable orbital 
states to achieve the desired end state. The optimal sequence of stable and unstable orbital states 
occur during coasting (thrust off) phases. Since the mathematical objective is to minimize propellant 
usage, thrusting (which is minimized) represents transfers between adjacent stable/unstable orbital 
states. Therefore, the goal of finding and stringing together highly efficient stable/unstable orbital 
states to reach some goal can be achieved in a single optimization step. Once an optimal transfer is 
computed, an investigation of the trajectory can yields many insights. 

In order for an optimal control approach to work, the optimal control formulation must not omit 
any of the dynamical complexity of the problem. For example, the gravitational field cannot be 
simplified to reduce the computational effort or improve algorithm convergence. Clearly, a highly 
robust optimization method is required. The optimization algorithm called Static/Dynamic Control4 
(SDC) was selected due to its unusual robustness and ability to solve highly nonlinear dynamic 
problems. SDC is a general, second order derivative-based optimal control method. Solutions 
obtained with SDC satisfy both the necessary and sufficient conditions of optimality. SDC has been 
successfully applied to N-body point mass gravity  model^^^^^^**. This paper demonstrates that SDC 
analysis can be extended to  gravity fields that are modeled with a high order harmonic expansions. 

APPROACH 

The technique used for computing optimal low-thrust transfers for an arbitrarily complex, ro- 
tating gravity field is described in this section. In the next section, optimal transfers involving point 
mass models and increasingly complex gravity fields are compared. Finally, the method is applied 
to a transfer between a high orbit and a low orbit with a plane change around the asteroid Vesta. 
Vestals gravity is modeled with a harmonic expansion of order twenty. 

Optimal Control Formulation of the Low-Thrust Asteroid Problem 

The problem of minimizing the total propellant required to  achieve a general orbital transfer is 
formulated as the following general, non-linear optimal control problem: 

subject to a state equation of the form 

-- dz(t) - T(z( t ) ,  v(t),w, t ) ,  
dt 
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and an initial condition of the form 
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The functions F (accumulated objective) and G (point-in-time objectives) are user selected, once 
continuously differentable objective functions. The number of point-in-time objective functions N 
is user selectable; the function T represents the physical interactions; and the function r returns the 
initial system state. 
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to describe the time evolution of the state is 
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dx 
dt 

The propellant mass flow rate m is a function of the magnitude of the thrust control vector IIvII, 
and the power currently available from the solar array. The power from the solar array is a function 
of the distance to the Sun, the non-thruster spacecraft power consumption, and time due to solar 
array degradation. The DAWN thruster Isp and efficiency is a function of power inputlo. The mass 
flow is modeled as a differentiable, parametric fit to  the thruster performance data. The parameter 
Nb is the number of gravitating bodies that are modeled. The gravitational acceleration vector 
a E (az, ay ,  a,) resulting from each body is given by a time dependent matrix times the gradient of 
a harmonic expansion of the gravitational potential, 

I R?ody 
Ne, n 

pbody  a(r,  A, 4, t )  [Qbody] ( t )  * v - r ,Pnm(s in(4) ) (cnmcos(mX)  4- Snmsin(mX)) (7) 

where [ & b o d y ] ( t )  is a rotation matrix from the body fixed rotating frame of the body to an inertial 
(non-rotating) frame, Pbody is the gravitational constant of the body, T is the scaler radius vector 
from the body center of mass to the spacecraft, R b o d y  is the semi-major axis of the body’s ellipsoid 
used in the expansion, Pnm are the associated Legendre polynomials of degree n and order m, X is 
the body fixed longitude of the spacecraft, and 4 is the body fixed latitude of the spacecraft. Cnm 
and Snm are the harmonic expansion constants. The parameter Ne,  is the order of the harmonic 

{ n=Om=O 
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expansion. The SDC algorithm was implemented using full second order analytic derivatives (in 
both time and space) of the harmonic expansion (7). 

Given an initial orbital state near an asteroid, the problem is to find the optimal time varying 
thrust v ( t )  and static control parameters w such that the square of the propellant mass is minimized: 

Objective : minimize (propellant mass)2  E min,,, (r7(w) - ~ 7 ( t p ) ) ~  (8) 

where rT(w) is the seventh component of the initial state corresponding to the initial spacecraft 
mass and'27(tf) is the final spacecraft mass. The functions F and G in equation (1) are selected to 
be F = 0 and G1 = (r7(w) - s 7 ( t p ) ) 2  (in this application, N = 1, tl = t p ) .  The propellant objective 
is squared to eliminate the incentive to run time backwards and obtain negative propellant masses. 

In the numerical applications to follow, the initial state is a given orbit determined by fixed 
instantaneous classical orbital elements (I'(w) = pre-specified, fixed state). 

Final State Targeting 

The final orbital state constraint used in this analysis has the form of a vector function of the 
final time and state, 5, that must be equal to, or less than or equal to, a vector constant: 

Terminal condition : @(z( t f ) , t p )  = OT vector constant (9) 

Constraints of this form translate to a surface or a volume in state space. When constraints of the 
type (9) are included in the optimal control formulation, the optimal solution's final state will end 
up on the surface or in the volume. 

An example of a function Q is an orbit plane constraint. The final orbital plane can be selected 
by requiring the orbital angular momentum direction to  be parallel to a given constant unit vector 
h:  

where Xbody( t f )  and V b o d y ( t f )  are the body's center of mass position and velocity respectively at 
the final time t f .  Other constraints were constructed for final orbit instantaneous eccentricity, semi- 
major axis, longitude of the ascending node etc. 

Choosing meaningful terminal constraints for asteroid orbits is not straight forward. The usual 
constants of motion in the two-body problem like eccentricity, argument of periapsis, etc. do not 
have analogies in the general asteroid problem. In general, there are no constants of the motion 
other than total system energy and angular momentum. Targeting instantaneous quantities (like 
eccentricity) may lead to undesirable local minima because the eccentricity of an uncontrolled orbit 
around an asteroid may oscillate wildly during each orbit revolution and body rotation. In general, 
there will be at least one local minima for each feasible number of orbital revolutions used to achieve 
a specific transfer, and possibly many more. Some of the target orbital states selected in this research 
were chosen to  have relatively stable elements to  minimize the aforementioned problem. Such orbits 
are similar to those that would be selected for science operations. The method used to solve the 
optimal control problem will admit any differentiable function (9) as a target, so targeting quantities 
other than instantaneous classical orbital elements can be accommodated. 

Other (non-terminal state) constraints in the optimal control formulation include a maximum 
thrust limit based on the power available, and a minimum allowed close approach distance to each 
body. 
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Figure 1: The hypothetical asteroid Peanut. 

RESULTS 

A hypothetical dumbbell-like asteroid named “Peanut” was invented for the purpose of studying 
optimal low-thrust transfers. The asteroid’s shape is plotted in Figure 1. A gravity field for Peanut 
was computed to tenth order assuming that Peanut has a constant density of 2.65 5 (this particular 
density gives Peanut the same gravitational constant as the asteroid Vesta: 17.8 $). Fields for 
Peanut of order >10 were computed, but these fields did not significantly alter solutions. Peanut 
was constructed to  be representative of a coalesced binary asteroid. The maximum extent of Peanut 
in the X, Y ,  and Z directions are 400 km, 217.7 km, and 248.8 km respectively. The formula used 
for Peanut’s surface is 

radius = 200 + 200 x Icosine(Zongitude)2 x cosine(Zatitude)1.21 [km]. (11) 

Orbital Transfers Around Peanut 

A series of optimal low-thrust transfers around Peanut were computed. In all cases, the trajectory 
was constrained to stay above a radius of 430 [km] from Peanut’s center of mass. This constraint 
ensures that the harmonic expansion for Peanut’s gravity remains convergent and provides a margin 
of safety of 30 [km] to avoid collisions. If a different gravity model like that of Weeks and Mdler, 
2UU211 was used in place of a haxmonic expansion, then optimal trajectories could be obtained inside 
the of 400 [km] maximum body radius. The spacecraft orbiting Peanut has an initial mass of 500 
[kg] with thrusters each producing 122.5 mN with a specific impulse of 3000 seconds. These engine 
values correspond to an ion engine operating with 2.5 kW of power with an efficiency of 72.1% - a 
little more efficient than the NSTAR“ thruster used on NASA’s Deep Space One mission. Peanut 
is assumed to rotate once every 5.3421 hours (the same as Vesta). 

Polar circular to polar circular transfers were investigated first. Polar orbits are scientifically 
valuable because of surface converge. Near circular, polar orbits below 750 [km] mean radius are 
unstable so initial and final polar orbits were selected above or at 750 [km]. Of course, nothing 
prevents intermediate orbits from being below the stability limit. The approximate radius of the 1:l 
resonance (spacecraft revolves once for each body rotation) is 550 km for both Vesta and Peanut. 
Since the lower limit for initial and final orbits is 750 km, The computed transfers will not necessarily 
pass through the 1:l resonance. Both the 1:l and 2:l resonance can result in strong and interesting 
perturbations. Polar orbits are stable well below 550 km at Vesta, so the effect of a 1:l resonance 
will be explored later in the paper. 

Table 1 summarizes several optimized polar to polar transfers. The column under   rev.^" is 

5 



the total number of revolutions completed in 6 days. The column under “Nt” is the number of 122.5 
mN thrusters used. The column under “Ref #” is a trajectory reference number. All polar to polar 
transfers allow a maximum fight time of 6 days. The computed inward bound transfers demonstrate 
the existence of different local minima using different numbers of revolutions (trajectories 2 and 3). 
The optimization leading to trajectory 2 used an initial guess of no thrusting (1.6816 revolutions). 
Trajectory 3 was obtained from an initial guess that thrust opposite the body relative velocity 
vector (5.3136 revolutions). The existence of multiple minima is expected due to oscillations in 
the targeted classical orbital elements. If classical elements are targeted, it is clear that multiple 
optimizations using different numbers of revolutions in the initial guess are required to find the best 
minima. Trajectory number 1 (top row of Table 1) is the result of solving the identical problem 
that trajectories 2 and 3 solve except a point mass model is used. Comparing trajectories 1 and 3 
indicate the propellant can be reduced when the full gravity model is used. 

Transfer 
Type 

Table 1 

OPTIMAL TRANSFERS BETWEEN POLAR ORBITS 

Propellant Time of Revs  Nt Gravity Ref # 
Usage [kg] Flight [d] model 

3500 -+ 1000 km circ. 
3500 -+ 1000 km circ. 
3500 -+ 1000 km circ. 
1000 -+ 750 km circ. 

Transfers from circular polar to  circular equatorial orbits require large plane changes. Point 
mass solutions for circular to circular plane change transfers first increase eccentricity, then change 
plane near apoapsis (where it is easiest,) and finally reduce eccentricity. Table 2 summarizes several 
optimized polar to equatorial transfers. All transfers using 4 thrusters or 2 thrusters allow a maxi- 
mum flight time of 6 days or 12 days respectively. An optimal trajectory treating Peanut as a point 
mass was computed (trajectory 5.) The point mass solution can be compared to the 10x10 gravity 
solution (trajectory 6.) The 10x10 gravity solution requires less propellant. This indicates SDC is 
exploiting the non-spherical gravity. Figure 3 compares the time evolution of periapsis, apoapsis, 
and inclination for the point mass and 10x10 gravity trajectories. Both the point mass and 10x10 
gravity solutions follow the same basic pattern: increase eccentricity, perform plane change, and then 
reduce eccentricity. What is different about the 10x10 gravity case is that it achieves useful changes 
in apoapsis without thrusting (a gray background in Figure 3 implies thrusting.) The point mass 
solution uses 13 thrust arcs whereas the 10x10 gravity solution uses only 10 thrust arcs. The close 
approaches to the asteroid are evident by large oscillations in the orbital elements in the bottom 
plot of Figure 3. Figure 2 compares the appearance of point mass and 10x10 gravity trajectories 
(trajectories 5 and 6.) 

1.0074 6.000 5.8757 1 point 1 
1.1168 6.000 3.3543 1 10x10 2 
0.9790 5.904 5.7662 1 10x10 3 
0.3165 5.616 11.1105 1 10x10 4 

A simple understanding of optimal transfers in non-spherical gravity can be constructed from a 
classical elements viewpoint. An optimal trajectory can exploit non-spherical gravity most efficiently 
during close approaches when both radial and non-radial gravity perturbations are largest. Close 
approaches are characterized by relatively large velocities. Only some elements c m  be efficiently 
changed when the velocity is large. Therefore, optimal trajectories will phase close approaches to 
achieve large changes in elements like apoapsis, semi-major axis, and/or eccentricity. This is clearly 
visible in Figure 3. An optimal trajectory will use non-spherical gravity to indirectly change elements 
like inclination by increasing apoapsis so the change in inclination can be achieved efficiently using 
thrust when far from the body. 
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Table 2 

OPTIMAL TRANSFERS B E T W E E N  P O L A R  AND EQUATORIAL ORBITS 

Transfer 
TYPe 

Propellant Time of Rev.s Nt Gravity Ref # 
Usage [kg] Flight [d] model 

Figure Trajectories 5  an^ vieweL along the initial and final orbit planes. ,ath trajectories 
are transfers from 1200 km circular polar orbit to 1200 km circular retrograde orbit around the 
asteroid Peanut. The trajectory on the left is based on a point mass model, the trajectory on the 
right is based on the 10x10 gravity model. 

1200 -+ 1200 km circ. 
1200 -+ 1200 km circ. 
1200 -+ 1200 km circ. 

Figure 4 is a plot of the instantaneous periapsis, apoapsis, and inclination as a function of time 
for an optimal trajectory from 1200 km circular polar orbit to 1200 km circular retrograde orbit using 
2 thrusters (trajectory 7). This trajectory requires more time than the 4 thruster cases (trajectories 
5 and 6), but shows the same characteristics as the higher thrust solutions. The optimal trajectory 
uses non-spherical gravity to indirectly change inclination by increasing apoapsis at during close 
approach so inclination change can be achieved efficiently using thrust far from the body. 

2.6124 6.000 8.0130 .4 point 5 
2.4802 5.928 8.1458 4 10x10 6 
2.5618 11.177 16.6521 2 10x10 7 
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Time Past Start of Trajectory [days] 

Figure 3: Instantaneous periapsis, apoapsis, and inclination as a function of time for optimal 
trajectories from 1200 km circular polar orbit to 1200 km circular retrograde orbit around the 
asteroid Peanut (trajectories 5 and 6). The trajectory represented in the top plot is based on a 
point mass model. The trajectory represented in the bottom plot is based on a 10x10 gravity model. 
Gray regions indicate when thrusters are operating. 

Orbital Transfers Around Vesta 

The asteroid Vesta is the first target for the DAWN discovery mission. Science orbits at Vesta 
will all be polar. One required transfer at Vesta is from an initial polar orbit with a mean radius 
of 950 kilometers to a final polar orbit of 375 kilometers with a plane change of 24 degrees. The 
plane change is required to maintain optimal Sun-surface view angles and avoid passing into eclipse. 
Optimal transfers between these orbits were computed based on increasingly complex gravity models 
for Vesta: point mass model, J2 model, 2x2 model, 4x4 model, and a 20x20 model. The transfer 
requires more than 100 orbital revolutions for all models. A flight time limit of 25 days was required. 
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Figure 4: Instantaneous periapsis, apoapsis, and inclination as a function of time for an optimal 
trajectory from 1200 km circular polar orbit to 1200 km circular retrograde orbit using 2 thrusters 
(trajectory 7). This trajectory is based on the 10x10 gravity model. Gray regions indicate when 
thrusters are operating. 

The spacecraft power budget and thruster performance are the same as those used for DAWN mission 
design. 

The results for Vesta are summarized in Table 3. Vesta's rotational period is 5.3421 hours. The 
1:1 resonance (spacecraft period = 5.3421 hours) corresponds to  a circular orbit radius of 550 km. 
Therefore, all transfers must pass through the 1:l resonance. The 1:l resonance has no effect in 
the point mass and J2 gravity models (trajectories 9 and 10 in Table 3). Once tesseral and sectoral 
harmonic terms are included (2x2 gravity field and higher) then the 1:l and other resonances become 
important. 

It turns out that the transfer is infeasible in the point mass model (trajectory 9). The plane 
change and radius change cannot be accomplished in 25 days. The solution in Table 3 represents 
a minimization of the infeasibilities: the semi-major axis ends up 26.7 km too high and the orbital 
plane ends up 7.9 degrees away from the target change of 24 degrees. 

If Vesta's 52 ( = .04078055 normalized) is included in the gravity model, then the transfer 
becomes feasible (trajectory 10). The oblateness of Vesta can be used to precess the longitude of 
the ascending node when the orbit is not polar. The optimal trajectory moves the inclination away 
from 90° to precess the ascending node, then returns the inclination to  90" as expected (see the top 
plot in Figure 5). 
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Table 3 

VESTA OPTIMAL TRANSFERS 

Transfer I Propellant Time of Rev.s Gravity Ref # 
TYFJe 
950 -+ 375 km circ. 

Usage [kg] Flight [d] model 
3.2190* 25.0000* 103.2735* point 9 

950 -+ 375 km circ. 
950 -+ 375 km circ. 
950 -+ 375 km circ. 
950 -+ 375 km circ. 
950 -+ 375 km circ. 

The spin of Vesta becomes important when a full 2x2 gravity model is used (trajectory 11). The 
second order tesseral and sectorial terms create a sensitivity to  the rotation of Vesta. In particular, 
the 1:l resonance becomes very important. The lower half of Figure 5 provides a plot of instantaneous 
inclination and longitude of the ascending node as a function of time for the optimal trajectory in 
the 2x2 field. The tesseral and sectorial terms can be used to reduce propellant mass and flight time 
significantly over using the J2  term only. There is a long coast through the 1:l resonance (white 
area on the bottom plot of Figure 5 .  SDC optimization has found an orbital state that uses the 
1:l resonance to achieve a significant change in both the inclination and longitude of the ascending 
node without thrusting. 

2.3248 24.9750 114.2145 52 10 
2.1252 24.8125 113.8165 2x2 11 
2.0738 22.1821 113.3495 4x4 12 
2.1277 22.1915 113.6058 20x20 13 
2.6312 24.9500 123.8786 20x20 14 

Using a 4x4 field to represent Vestals gravity allows SDC to find an even more efficient transfer 
(trajectory 13). The trajectory in the 4x4 field has an additional feature of interest below the 1:l 
resonance. The top half of The trajectory uses the 3:2 resonance to rapidly alter inclination near 
days 19 arid 20. Figure 6 provides a plat of instantaneous inclination and longitude of the ascending 
node for the optimal trajectory in the 4x4 field. 

The largest gravity model used, a 20x20 field, did not significantly change the character of the 
transfer from that of the 4x4  model (compare the top and bottom plots in Figure 6). However, as 
with the hypothetical asteroid Peanut, the number of revolutions in the initial guess will dictate the 
local minima obtained. Comparison of trajectories 13 and 14 in Table 3 indicate that different local 
minima associated with different numbers of total revolutions result in very different performances. 
Trajectory 13 requires 19% less propellant and 11% less flight time than trajectory 14. The best 
procedure to explore the complex- dynamical space of optimal trajectories is to compute optimal 
trajectories using different numbers of revolutions in each initial guess. The range in the feasible 
number of revolutions for any particular transfer cannot be a large fraction of the total number of 
revolutions, so the search will be small. Perhaps a better apporach is to adopt orbital targeting 
parameters which do not oscillate in uncontrolled orbits. 
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Figure 5: Instantaneous inclination and longitude of the ascending node as a function of time 
for an optimal Vesta transfer based on a gravity model including only a Keplerian-term and a J2 
term (trajectory 10) top plot, and based on a full 2x2 gravity model (trajectory 11) bottom plot. 
Gray regions indicate when thrusters are operating. 
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Time Pas; Start of Trajectoh [days] 

Figure 6: Instantaneous inclination and longitude of the ascending node as a function of time 
for an optimal Vesta transfer based on a 4x4 gravity model (trajectory 12) top plot, and based 
on a 20x20 gravity model (trajectory 13) bottom plot. Gray regions indicate when thrusters are 
operating. 

Figure 7 presents a face-on view of the optimal 20x20 gravity field transfer (trajectory 14). The 
optimal transfer actually spends time at lower altitudes than the final target altitude in order to 
achieve the most efficient plane change. The transfer ends by rising back up to the target altitude. 
Figure 8 presents a polar view of the optimal transfer. The maximum rates of plane change occur 
near the 1:l and the 2:l resonances of the spacecraft orbital period verses the rotational period of 
Vesta. Some plane change also occurs near the 3:2 resonance. A minimum flyby radius constraint 
must be active to  avoid impact. This is due to  the ease of plane change at very low altitudes 
(near the 2:l resonance). Figure 9 is a plot of the progression of the mean orbital period during the 
transfer. Note the rapid decline in the period (and hence altitude) when the spacecraft orbital period 
is near Vesta’s rotational period (1:l resonance). Near the 1:l resonance, angular momentum can 
be efficiently transferred from the spacecraft orbit to  the rotation of Vesta. Also, note the excursion 
of the mean period below the target period to the 2:l resonance. The 2:l resonance is where the 
greatest plane change rate occurs in the transfer. 
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Figure 7: SDC Optimal trajectory from high Vesta polar orbit to low Vesta polar orbit with 
a plane change of 24 degrees based on the 20x20 gravity model (trajectory 14). 
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Figure 8: Polar view of SDC Optimal trajectory from high Vesta polar orbit to low Vesta 
polar orbit with a plane change of 24 degrees based on the 20x20 gravity model (trajectory 14). 
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Figure 9: The mean orbital period of the high Vesta polar orbit to low Vesta polar orbit 
trajectory based on the 20x20 gravity model (trajectory 14). The instantaneous orbital period is 
moving average over a single revolution. 

SUMMARY AND CONCLUSIONS 

An optimal control problem is formulated to minimize the propellant required to achieve an 
arbitrary orbital transfer around an asteroid. The resulting trajectories use an optimal sequence of 
stable and unstable orbital states to achieve the desired end state. The optimal sequence of stable and 
unstable orbital states occur during coasting (thrust off) phases. Since the mathematical objective 
is to minimize propellant usage, thrusting represents transfers between adjacent stable/unstable 
orbital states. Therefore, the goal of finding and stringing together highly efficient stable/unstable 
orbital states to reach some goal can be achieved in a single optimization step. 

In order for an optimal control approach to work, the optimal control formulation must not omit 
any of the dynamical complexity of the problem. The gravitational field cannot be simplified. A 
highly robust optimization method is required. The optimization algorithm called Static/Dynamic 
Control was selected due to its unusual robustness and ability to solve highly nonlinear dynamic 
problems. SDC is well suited to explore the optimal trajectories that exist in the asteroid orbit 
problem. SDC does not require a gdod guess to begin the optimization. This feature that can be 
used to explore the optima space of transfers around asteroids. 

An understanding of optimal transfers in non-spherical gravity can be constructed from a classical 
elements viewpoint. An optimal trajectory can exploit non-spherical gravity most efficiently during 
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close approaches when both radial and non-radial gravity perturbations are largest. Close approaches 
are characterized by relatively large velocities. Elements like apoapsis, eccentricity, and semi-major 
axis can be efficiently changed when the velocity is large. Therefore, optimal trajectories will phase 
close approaches to achieve large changes in elements like apoapsis. An optimal trajectory will use 
non-spherical gravity to indirectly change elements l i e  inclination (which are best changed far from 
the body) by increasing apoapsis so the change in inclination can be achieved efficiently using thrust. 
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