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Abstract- We present a new approximation to the maximum 
likelihood (ML) classifier to discriminate between M-ary and 
M'-ary phase-shift-keying (PSK) transmitted on an additive 
white Gaussian noise (AWGN) channel and received noncoher- 
ently, partially coherently, or coherently. When 100 symbols 
are observed to discriminate between binary PSK (BPSK) and 
quadrature PSK (QPSK), the misclassification probability of the 
proposed classifier is indistinguishable from that of the ML 
classifier for any symbol signal-to-noise ratio (SNR) in the range 
from -10 dB to 10 dB. A software implementation on a desktop 
computer requires about 1 millisecond to classify the signal, and a 
tunable parameter can be used to reduce the complexity further, 
with a graceful degradation in performance. We also present a 
new threshold optimization technique that improves several other 
previously published modulation classifiers. Finally, we derive a 
lower bound misclassification probability as a function of the 
number of observed samples, which is an inherent limitation 
classifiers face even on high SNR channels. 

I. INTRODUCTION 
We analyze the performance of optimum and sub-optimum 

modulation classifiers to discriminate M-PSK from MI-PSK. 
Modulation classification has long been an important compo- 
nent of noncooperative communications in which a listener 
desires to intercept an unknown signal from an adversary. 
It is becoming increasingly important in cooperative com- 
munications as well, with the advent of the software-defined 
autonomous radio. Such a radio may know little a priori about 
an incoming signal but may be required to correctly classify its 
data rate, modulation type, and forward-error correction code 
before properly configuring itself into a conventional radio 
that acquires and tracks the symbol timing, carrier frequency 
and phase, and ultimately produces decoded bits. This type of 
radio may be helpful in a Mars orbiter, for example, if it must 
communicate to multiple landed assets on Mars as it orbits and 
cannot wait for an uplink command from Earth to reconfigure 
it for each pass. 

11. PRELIMINARIES 
A. Signal Model 

For ease of exposition, this paper is limited to binary hy- 
pothesis testing, although the extension to multiple hypotheses 
can be done in the usual way [l]. Throughout, we assume 
M < MI and each is a power of two. Each modulation type 
is assumed a priori to occur with probability one half and 
remains the same for N received symbols. Timing is assumed 

to be known, and the complex baseband representation of each 
received symbol at the output of a matched filter has the form 

(1) 
where A is a real constant, 8, is the data modulation for the 
IC" symbol, 0, is the carrier phase, and n, = n , , ~  + jn,,I 
is a complex Gaussian with mean zero and variance u2 in 
each dimension. For BPSK ( M  = 2), 0, E { O , T } ,  while for 
QPSK, 0, E {~/4,3~/4,5~/4,7~/4}, and in either case the 
0,'s are assumed to be independent and uniformly distributed 
from symbol to symbol. Initially, we assume noncoherent 
reception, in which 8, is unknown, uniform on [0,2n), and 
constant over all observed symbols. We also assume that A 
and u2 are known. Later, we will extend the discussion to 
coherent and partially coherent reception in which something 
about 0, is known, and to cases in which the symbol SNR 
E,/No = A2/ (2u2)  is known but not A and u2 individually. 
B. ML modulation classzjication 

Since the modulation types occur with equal a priori prob- 
ability, the ML classification rule results in the minimum 
probability of misclassification. It can be implemented by 
comparing the likelihood ratio (LR) of the N observed samples 
to a threshold of one. The conditional likelihood function 
(CLF) given 0, for M-ary PSK, is [2, Eq. B.3bI 

T,  = Ad(enfec) + n,, C .= 1, . . . , N 

The LR for the M and M' hypotheses is given by averaging 
the CLF's over e,, which is uniform over (0,27r), and forming 
the ratio: 

(4) 

To compute the LR, E,/No is not sufficient; A and u2 must 
be known individually (to compute zn(.; .)). 
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Fig. 1. 
ML classifier when I = 12. 

The approximate ML classifier is nearly indistinguishable from the Fig. 2. The approximate ML classifier is near-optimal for small values of I. 

As can be seen, small values of I in (6) results in excellent 
classification performance, even though the computation is not 
necessarily an accurate approximation of LFH. 

C. qLLR approximation to log-LR 
At low S N R ,  one may use the approximations cosh(z) x 

1 + x2 and In( 1 +x) x x in (4), along with the approximation 
IO(%) x z for large post-detection SNR, which leads to the 
quasi-LLR or qLLR 121, [3] approximation to the log-LR 
(LLR): 

I I N  II 

where llzll denotes the magnitude of the complex value z. In 
principle, the qLLR metric should be compared to threshold 
zero, since it is an approximation to the log-LR. We defer a 
discussion of thresholds to section V. 

111. NEW APPROXIMATIONS TO THE LR 

A. Integral approximation to the LR 

For random realizations of r, CLFM(8c) and cLFMI(8c) 
frequently differ by more than an order of magnitude. If one 
of the CLF's is higher that the other for the entire range 
8, E (0,27r), then a single test comparing CLFM(8,) to 
CLFMI(B,) at any 8, would produce the correct classification. 
While this property does not hold with high enough probability 
to produce near-ML performance, this approach can be refined 
in a parameterized way, as follows. 

One can see from (3) that the period of C L F M ( ~ , )  is 
2n lM.  Thus, we can write the likelihood function for hy- 
pothesis H E {M, M'} as 

B. Hypothesis-dependent carrier-aided LR approximation 
When I = 1 in the method above, the complexity is low, 

but the performance is poor (see Fig. 2). However, we can 
use I = 1 and still get near-ML performance by using r to 
estimate 8, in the H-PSK hypothesis by using the Hth power 
to remove the modulation, averaging over many symbols, and 
then normalizing the resulting angle: 

N 

(7) 
1 

H-ary PSK hypothesis: 86") = v H  
** 

n=l 

When I = 1, CLFM(iLM))/CLFM,(iLM'))  is a good ap- 
proximation to (4), as it is an approximation to coherent- 
reception classification. The carrier estimates in the two 
hypotheses are used with the same basic reasoning as in 
per-survivor processing (PSP), the method used to perform 
joint channel estimation and decoding. The phase ambiguities 
present in these estimates of e,, namely, a 2 r / M  (27rjM') 
radian ambiguity for the M-PSK (M'-PSK) hypothesis, do 
not cause a problem because, as previously mentioned, the 
CLF's are also periodic with period 27r/M (27rlM). 

The performance of the joint phase-estimaterklassifier for 
I = 1 is shown in Fig. 2. At high SNR, the performance is 
indistinguishable from the ML noncoherent classifier, while 
at low SNR, the degraded phase estimation results in only 
slightly suboptimal performance. 

I 
C. Normalized qLLR (nqLLR) 

We also propose a lower complexity alternative to the 
1 (T) (6) 

27l 
M W  

LFH = 1 CLFH(@,)d8, x - CLFH 
I i= l  . .  

above classifiers. It is simply a normalization of the qLLR 
where the last equation becomes as I by the classification metric, which we refer to as the nqLLR metric: 
rectangular rule for integration. The proposed classifier is to 
substitute (6) into (4), and let I be a tunable parameter. 

to ML classification, for the case of noncoherent reception 
of BPSWQPSK, with I = 12. The approximate method has 
performance indistinguishable from ML classification. 

Fig. 1 illustrates the performance of this classifier compared nqLLR = M (8) 
E:='=, llrkll 

This metric was originally devised as a coarse way to im- 
plement the qLLR without needing knowledge of A. Since 



Fig. 3. 
ML, qLLR, nqLLR, and mqLLR noncoherent classifiers, for N = 100. 

Performance of the classifier using (6) with I = 12, compared to 

llrkllM is a rough estimate of NA‘, nqLLR may be 
compared to 0.5, instead of comparing qLLR to w, for 
example. 

Serendipitously, the normalization has a beneficial effect 
in the classification performance itself. Fig. 1 shows the 
performance of nqLLR compared to ML, the approximate- 
ML classifier discussed above, and qLLR with previously 
suggested thresholds [3]. 

IV. COHERENT/PARTIALLY-COHERENT CLASSIFICATION 

In coherent reception, the carrier phase 0, is known, and it 
can be used instead of the estimate in (7). Thus, the expectation 
in (4) degenerates to an evaluation of the CLF at a single point: 

(9) 

This is the optimal statistic for ML classification with coherent 
reception, with performance shown in Fig. 2. 

If something is known about the carrier phase, but the 
randomness is not completely removed, we may account 
for it in the classifier by using a distribution on 8, that is 
different from the uniform distribution assumed in noncoherent 
reception. We refer to this as partially coherent reception.’ For 
example, a phase-locked loop that tracks a residual carrier may 
produce an error in its estimate that is Tikhonov distributed. 
Other randomness, due to oscillator phase noise, inter-symbol 
interference, or phase ambiguities, for example, may also 
introduce randomness to an estimate of 8,. 

‘Note, by partially coherent reception we do not mean differentially 
coherent reception, which also is sometimes referred to by the same term. 
Rather, we mean that the distribution on Oc is something other than uniform. 

For partially coherent reception, we may use (4), replacing 
the uniform probability distribution for 8, with the appropriate 
distribution. As before, we do not have to  compute the numer- 
ical integral precisely, but simply sample the CLF functions at 
a few phase values chosen in accordance with the probability 
density function for 0,. 

V. THRESHOLD OPTIMIZATION 
A. Suboptimality of previously derived thresholds 

A critical limitation of the qLLR metric is that it does 
not approximate the LLR metric precisely enough for the 
optimal LLR threshold (zero) to be used with success. Indeed, 
the qLLR metric is always nonnegative, meaning that with a 
zero threshold (optimal for UR), it would produce the same 
decision regardless of the transmitted modulation. 

One can optimize the threshold for the qLLR metric itself, 
instead of using the optimal threshold (zero) for the LLR 
metric. This was attempted analytically in [3], using the 
assumptions that the the real and imaginary parts of the sum in 
(5 )  are jointly Gaussian and have equal variance under the two 
hypotheses. The assumptions lead to the “optimum” threshold 
(for BPSWQPSK) [31:’ 

T = A2V&’ (exp [ &] ) 
where VM = CEO* . g-‘. However, the vari- 
ances are not equal, especia ly at high S N R .  For example, 
in BPSWQPSK classification, the variance the real part of the 
sum in (5) is A2V2 when BPSK is sent and A2(V2 + 1) when 
QPSK is sent [3, EQ. (A.l2)]. At high SNR, ,V2 x i, and thus 
the variance is nearly three times higher when QPSK is sent. 
A similar comparison shows the variance of the imaginary 
part is nearly twice as high when QPSK is sent. Therefore, at 
low SNR, we expect that the threshold in (IO) may be near- 
optimal, but at high S N R  it will be too low. This is confirmed 
by our numerical results. 

A further approximation &(z) M e” valid for large z (high 
post-detection S N R )  leads to the approximate threshold [3] 

N A ~  
2 

T = -  

B. Empirical threshold optimization 
An alternative to the analytical derivation of an appropriate 

thresholds, which in the case of both (IO) and (1 1) involved 
some approximation, we may optimize the threshold for the 
metric empirically, using the following process: 

1) Generate a large number of received samples according 
to (1) for each of M-PSK and M’-PSK modulation 
types. 

2) Group the samples into blocks of length N ,  and compute 
a set of sample classifier metria. 

2The thresholds (10) and (1 1)  differ from the original presentation [3], to 
account for a difference in scale of the received symbols. The presentation 
in [3] scales the received signal so that the noise variance is unity, but this 
presumes that the noise variance is known at the receiver, an assumption we 
prefer to avoid unless the classifier requires it. 
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Fig. 4. 
metrics when N = 100, compared to the optimal zero-threshold for LLR. 

Empirically optimized thresholds for qLLR, mqLLR, and nqLLR 

3) Sort the metrics for M-PSK and M’-PSK received 

4) For each observed metric a, in increasing order; 
symbols separately, in increasing order. 

a) Count the number of observed M-PSK metrics less 
than a 

b) Count the number of observed MI-PSK metrics 
greater than a 

c) Compute the probability of misclassification when 
using threshold a, using the sum of the above 
quantities 

5) Report the threshold that minimizes the probability of 

This procedure may be implemented efficiently enough that 
a desktop machine can generate about 100 million samples 
and determine an empirically optimal threshold in less than 
an hour. Fig. 4 shows the empirically optimized thresholds for 
the qLLR and nqLLR metrics for N = 100, based on 100,000 
classifier metrics (10 million received symbols). 

misclassification. 

Notes: 
Threshold optimization need be performed only once, 
ahead of time. In a practical implementation, given N and 
E,/No a table look-up or function-fit of the appropriate 
curve in Fig. 4 may be used to determine the threshold. 
The optimal threshold for the LLR metric is zero, and 
requires no empirical optimization. 
The optimal threshold for the qLLR metric is relatively 
flat over a broad region of E,/No, being near 0.6 for 
ES/No > -5 dB. This is a desirable characteristic, 
because E,/No may not be known exactly. 
For &/NO above approximately 2 dB, the classifier per- 
formance is so good that many different thresholds could 
be used with excellent performance. The truly optimal 
qLLR threshold is likely monotonically decreasing in 

The optimal threshold for nqLLR is also quite flat, and 
ranges only from about 0.15 to 0.6 for -10 < &/NO < 
10. At high SNR, it is approximately equal to the optimal 

ESINO. 

qLLR/(NA2) threshold, because the qLLR/(NAz) met- 
ric and nqLLR metric are nearly identical in that region. 

VI. COMPARISONS AND NUMERICAL RESULTS 

The performance of this classifier, using a threshold of 
one, is shown in Fig. 2. At high SNR, it is virtually in 
agreement with the ML performance, because the estimates 
of Bc are quite good. At low SNR, the performance degrades 
slightly. A software implementation required 0.25 milliseconds 
to perform a classification. 

The approximate ML metric may be computed in O ( I N )  
time, because it is the sum of I terms, each of which is 
a product of N terms, each of which takes O(1) t’ ime to 
compute. Since the integration range is partitioned in the same 
way under each hypothesis, each hyperbolic cosine evaluation 
used in the numerator of (4) is also used in the denominator, 
and thus, only M‘ hyperbolic cosine evaluations are needed 
for each ( i ,n)  pair. Also, we may write 

2, (9; 7) = Re[?-,] cos(a(q, 2)) - Im[r,] sin(a(q, i)), 

where a(q, i) = r ( i / I+q/2) .  The trigonometric terms for all 
a(. , .)  may be precomputed and stored in a table, since they 
do not depend on r. Thus, only addition, multiplication, and 
two hyperbolic cosine evaluations are required for each (i, n) 
pair. 

For the example in which I = 12 and N = 100, an 
implementation in C on a linux desktop computer required 
approximately 1 millisecond to compute the approximate ML 
classification metric. When I = 5 ,  speed approximately 
doubled, and performance degraded by about 0.5 dB. 

. It’s performance is illustrated in Fig. 2. There is about 
a 1 dB difference between coherent and noncoherent ML 
classification at low SNR, and no difference at high SNR. 
A software implementation of the coherent classifier required 
about 0.1 milliseconds. 

The approximations used in (1 1) result in about a 1 dB loss 
compared to using threshold (10) Note that the performance 
with threshold (10) begins to deteriorate at E,/No > 2 dB, 
compared to the ML classifier, as expected because of the 
suboptimal threshold noted above. 

A. ClassiJcation pe~ormance 
Fig. 3 shows the performance of the LLR, qLLR, mqLLR, 

and nqLLR classifiers using empirically optimized thresholds. 
In each case, the probability of misclassification is determined 
from a separate simulation than the one in which the optimal 
thresholds were determined (Le., there is no inappropriate 
reliance on training data in generating the error rates). 

As can be seen, when the thresholds are empirically opti- 
mized, the qLLR, mqLLR, and nqLRR decision rules perform 
near the ML-limit for &/NO < -4 dB. As E,/No increases 
the decision rules begin to perform differently. The mqLLR 
metric diverges and is not useful for E,/No > 0 dB. The 
qLLR metric remains within about 1 dB of the ML limit, and 
the nqLLR metric remains within about 0.5 of the ML limit 
throughout the entire range of SNR’s.  



B. Complexity 
It is suggested in [2], [3] that the ML classifier is not 

practical. However, if computation of EO, {CLF(B,)} requires 
only a constant number of evaluations of CLF(B,), then (4) 
can be computed in O ( N )  time. This is because, under either 
hypothesis (M-ary PSK or M‘-ary PSK), the CLF(8,) is 
product of N items each of which can be computed in 0 ( 1 )  
time. In simulations with N = 100, M = 2 ,  and M’ = 4, it 
was found that 100 to 150 CLF evaluations were needed to 
compute the expectation, or about 100,000 hyperbolic cosine 
function evaluations overall. 

Unfortunately, it is not true that a straightforward compu- 
tation of E~,{CLF(B,)} can be computed in O ( N )  time, 
because the CLF(8,) has extrema that are exponentially re- 
lated to N ,  and thus the numerical computation of the integral 
requires finer partitions for higher values of N .  This extrema 
property can be seen as follows. By elementary calculus, the 
first derivative of CLF(0,) is 

N r .  A 
cosh 1 2Re(~ne-jec)] I . (12) 

n=l ,k#l  L” J 

This is can be quite large. For example, if 8, = 0, the SNR is 
large, and r x A(1 , .  . . , l), then 

Since max pLF’(8,)1 = n(eN), no numerical integration 
which partitions the domain of the integral into a number of 
intervals independent of N will produce a correct calculation 
as N increases. That is, for higher values of N a finer partition 
of the domain is required and thus an increasing number of 
evaluations of the CLF. Therefore, computing the LR in this 
way requires more than O ( N )  time. 

C. Complexity 
Nearly all of the classifiers considered here have computa- 

tional complexity O(N) .  Linear complexity does not mean it 
is practical, however. If the ML rule could be implemented, 
there would be no need for any other decision rule. However, 
computing the LR as given in (4) requires two numerical 
integrations of a function that to evaluate one time requires 
N or 2N evaluations of cash(), N evaluations of In(), and 
one evaluation of expo. This is linear in N ,  but perhaps still 
more complicated than a real-time autonomous radio could 
perform. To reduce the computation, one can rewrite (4) as 

] (13) 
Ee, { IX=’=, cosh[Xk(o; QI} [ Ee, { nL1 (4 cosh[a(o;  Q,)I)} 

LLR = In 

Assuming a the expectation is accomplished with a numerical 
integration requiring 100 evaluations of the function, a sin- 
gle LLR metric requires 900N exponential, logarithmic, and 
trigonometric function evaluations. 

The qLLR and nqLLR do not require any exponential, log- 
arithmic, and trigonometric function evaluations. They require 
only multiplication, division, and magnitude operations. 

D. Required Parameter estimation 
All other things equal, we would prefer a classifier that 

requires the least knowledge regarding the signal parameters. 
The LLR metric requires knowledge of .E,/No to compute, for 
example, but not E, or NO individually. On the other hand, 
the qLLR metric with threshold given by (10) requires both 
E,/No and E,. The approximate threshold of (11) performs 
worse but does not require knowledge of E,. The mqLLR 
metric also requires both parameters. 

The proposed nqLLR metric requires only E,/No. Fur- 
thermore, among all classifiers considered, it is unique in 
providing acceptable performance with knowledge of neither 
E,/No nor E,. Computing the metric requires neither, and if 
we set a fixed threshold of 0.4, perfomhce is about within 1 
dB at E,/No = 1, and within 3.5 dB at very low E,/No. 

VII. A LOWER BOUND ON MISCLASSIFICATION 
PROBABILITY 

Theorem 1: If N independent complex baseband symbols 
from an a priori equiprobable BPSK or QPSK signal are 
observed at the output of a noncoherent noiseless channel, the 
minimum probability of modulation misclassification is 2 - N ,  
ProoJ r, is uniformly distributed on the circle of radius A, 
regardless of 8,. This is a simple consequence of the fact that 
8, is uniformly distributed. Thus, when N = 1 the observed 
signals for BPSK and QPSK are identically distributed and 
the minimum misclassification probability is 1/2. 

Now suppose N > 1. Let B = ( b l , .  . . , b N ) ,  where b, = 
8, + 0,. From ( T I , .  . . , T N ) ,  we may ascertain A and B, and 
vice versa. Since A does not depend on the modulation type, 
B is a sufficient statistic for the optimal (minimum probability 
of misclassification) classifier. If there exist i and j such that 
b, = b j  + ~ / 2  mod 2 7 ~ ,  then the signal cannot be BPSK, and 
the optimal optimal classifier decides that QPSK was sent, 
with no probability of error. Otherwise, for all n = 1, . . . , N ,  
either b, = bl or b, = bl + 7~ mod 2 7 ~ .  Under the BPSK 
hypothesis, P(b, = bl orb, = bl+n mod 2r lBPSK)  = 1. 
Under the QPSK hypothesis, for n > 1 ,  P(b, = bl or b, = 
bl + 7~ mod 2 n J Q P S K )  = 1 / 2 ,  since b, takes on the four 
values in { b l ,  bl + n / 2  mod 27r, bl + 7~ mod 2 ~ ,  bl + 3 ~ / 2  
mod 27r) with equal probability. Thus, by the independence 
of the modulation symbols, Thus, for all N > 1, this BPSK- 
consistent event more probably arises from BPSK than from 
QPSK and the optimal classifier decides BPSK. In summary, 
the optimal classifier is incorrect with probability 

Pe = P(QPSK)PeIQpsK + P(BPSK)PeIBpsK = 

- .  2 4 N - 1 )  + - . o  = 2 - N . 0  (14) 

Corollary I :  Achieving probability of misclassification be- 

1 
2 2 

low requires N 2 20 observed samples. 
P ~ O J  2 - 2 0  = 9.54 x 10-7. 



This can be generalized as follows. 
Theorem 2: If N independent complex baseband symbols 

from an a priori equiprobable M-PSK or M’-PSK signal, 
M < M‘, are observed at the output of a noncoherent power. 
noiseless channel, the minimum probability of modulation 
misclassification is f ( fi)-(N-l). 
Proo$ Using a similar argument as above, 

complexity and performance given here, the nqLLR metric 
is seen to be a near-optimal, low-complexity modulation 
classifier appropriate requiring only the S N R  but not the signal 
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2k7r M 
P(b, = bl + - for some integer k,lM’) = - M .  M‘ 

If this M-PSK-consistent event doesn’t occur, the modulation 
is M’-PSK with certainty. Thus, 

- -+)-W-l).n 1 M  - 
2 M  
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TABLE I 
A SUMMARY COMPARISON OF CLASSIFIERS. 

dB Gap to h4L 
Needed Parameters at E,/No = 

Classifier Eq. Thresh. &/No E3 - -  1 ' Complexity' 




