

Future Capabilities for the Deep Space Network

JEFF B. BERNER KENNETH S. ANDREWS SCOTT H. BRYANT

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY INTERPLANETARY NETWORK AND INFORMATION SYSTEMS DIRECTORATE

NEW DOWNLINK CHANNEL

- As part of the Network Simplification Project, the Receiver, Ranging, and Telemetry processing were integrated into a single subsystem
 - A Downlink Channel provides all downlink data types (Doppler, Range, and Telemetry)
- Ranging was re-implemented as a single VME DSP processor board in the receiver
 - Instead of a chassis of custom hardware, ranging is now software running on a commercial board
- The telemetry function was implemented in a VME chassis
 - Standard (7, ½) Convolutional decoding, frame synchronization, derandomization, and output formatting were reduced to a set of just three VME boards, leaving the majority of the chassis open for new capability
 - Two sets of interfaces for symbol data were provided, one for external decoders (such as the current Block III MCDs, which decode (15, 1/6) Convolutional codes), and the other for internal decoders
 - Internal interface is an industry standard FPDP interface, with both the symbols and the symbol's time tag
- The new Downlink Channels easily support the addition of new functions, three of which are discussed in the following slides

TURBO CODES

- What are they?
 - Turbo codes are a new class of error correcting codes that have been approved by the CCSDS
 - They are block codes that are generated by two constraint length 4 convolutional codes
 - One of the convolutional codes operates on a permutated set of source bits
 - There are four frame sizes currently defined: 1784, 3568, 7136, and 8920 bits
 - There are four coding rates defined: 1/2, 1/3, 1/4, and 1/6
- Why use them?
 - Performance gain
 - Rate 1/6 turbo code is 0.8 dB better than (15, 1/6) convolutional code concatenated with Reed-Solomon code
 - Rate 1/3 turbo code is 0.4 dB better
 - Decoder complexity
 - Decoding algorithm for (15, 1/6) code is approximately 10 times more complex
 - Turbo decoding can be implemented in software running on commercial DSPs
 - (15, 1/6) decoder required custom ASIC implementation

8920 Bit Frame

TBD

TURBO DECODER IMPLEMENTATION

- The Turbo Decoder is implemented as software running on Texas Instruments Digital Signal Processors (DSPs)
 - Pentek Octal DSP boards are installed in the TLP
 - Additional decoder speed is obtained by adding a second Octal board
- Quantized 8-bit symbols, along with a 24-bit time tag, are sent to the Octal board via an industry standard FPDP (Front Panel Data Port) interface
 - Allows for microsecond time tagging of decoded data
- Control software is integrated into the standard TLP software
 - Decoded data sent across the VME backplane to the output data formatting card

TURBO DECODER STATUS

- First delivery of Turbo Decoder has been accomplished
 - Provides support for Messenger bit rates (104 kbps)
 - Subset of code rates and frame sizes
- Next delivery will be in 2004
 - Will support STEREO data rates (up to 720 kbps)
 - All code rates and frame sizes
- Final delivery will be in 2005
 - Second Octal board will be added
 - Supports MRO data rate of 1.6 Mbps

PN RANGING

- What is PN ranging?
 - Pseudo Noise (PN) ranging involves creating a ranging signal from a set of short PN sequences, logically combined to provide a longer, unambiguous signal
 - Current ranging (Sequential Ranging) sends tones of different frequencies to set the precision and to resolve the range ambiguity (the highest frequency sets the precision, the lowest sets the ambiguity)
 - PN ranging sets the precision by the chip rate of the modulation and the ambiguity resolution by the length of the combined sequence
- Why use PN ranging?
 - Operationally, PN ranging is more robust in the presence of link changes
 - Integration time on the downlink can be changed in real time, without changing the uplink (and waiting an RTLT); Sequential ranging requires changing the uplink
 - Short code periods (one second or less) remove the need to know the RTLT for sequencing
 - PN ranging allows for straight forward regenerative ranging on the spacecraft
 - Can improve the downlink ranging SNR by up to 30 dB

PN RANGING IMPLEMENTATION

- Unlike the previous ranging implementation, the new implementation generates the ranging modulation in software (running on Digital Signal Processors or DSPs
 - No new hardware is needed; only the software needs to be modified
- Implementing PN ranging involves accepting the subsequence definitions and the logical combinations for each one
 - Correlation is done after the received signal is accumulated for the necessary integration time
 - Since the final sequence is a combination of smaller sequences, the accumulation is done on each of the component PN sequences; thus the position in a million chip sequence can be resolved with only 77 correlations
- Control of the ranging type selection and configuration needs to be integrated into the higher level ranging software

INTERPLANETARY NETWORK AND INFORMATION SYSTEMS DIRECTORATE

PN RANGING STATUS

- A set of PN sequences has been selected that provide equivalent or better performance than the sequential tones
- Implementation is planned for 2005
- Ranging regeneration is included on the New Horizons transceiver (launch in 2006)

LOW DENSITY PARITY CHECK CODING

- What are they?
 - Low Density Parity Check (LDPC) codes are the second generation of "modern" codes, following turbo codes.
 - They were first defined by Gallager in 1962, but were not practical at that time
 - Rediscovered after the turbo code revolution in 1994
 - Many improvements have been made in the last few years through extensive research
 - LDPC codes are block codes defined implicitly by a sparse parity check matrix:
 - The goal is to design the parity check matrix to optimize performance and complexity
 - Performance is similar to turbo codes
 - Threshold is typically about 0.5 dB from channel capacity
 - An error floor constrains the minimum achievable bit and frame error rates
- Why use them?
 - Decoding is iterative, like turbo codes
 - Uses soft input symbols
 - Decoder structure is regular and highly parallel, allowing fast decoders
 - Stops when a codeword is found, or after a maximum number of iterations
 - LDPC codes meet or exceed turbo code SNR performance, with decoders that are 3 (software implementation) to 30 (hardware implementation) times faster
 - This allows decoding of higher data rates than turbo codes

LDPC IMPLEMENTATION

- LDPC codes would only be used in a high data rate scenario
 - 2 Mbps and greater
- High speed implies that the implementation would need to be in hardware, instead of software
 - Frame synchronization must be done at the symbol rate, not the codeword rate
- Integration into the TLP would be very similar to the Turbo Decoder
 - The decoder board would be a VME card
 - The symbols and time tag would be delivered via the FPDP interface
 - Decoded frames would be passed to the formatter processor
 - High level control software would be integrated into the TLP software

LDPC STATUS

- At this time, LDPC codes are not yet funded for implementation in the DSN; however:
 - They are an extremely active research area
 - Over 100 papers/year are published on LDPC codes
 - Many of these investigate tradeoffs between desirable characteristics
 - Threshold: required E_b/N_o before code begins to work
 - Error floor: minimum bit and frame error rates at practical SNR values
 - Decoding and encoding complexity
 - Hardware LDPC decoders on FPGAs and ASICs have been built for research purposes, including at JPL
 - Standardization is underway
 - Several LDPC codes have been proposed at CCSDS panel meetings
 - Proof-of-concept deep space experiments are being considered at JPL
 - Draft standard has been written for Digital Video Broadcast (DVB) use
 - Encoded block lengths 16200 and 64800
 - Code rates from 1/2 to 9/10
 - No commercial applications yet, but expect them soon

CONCLUSION

- The new downlink architecture allows for the addition of new capabilities into the DSN
 - Turbo decoding has already been implemented
 - PN ranging is planned to be implemented
 - Low Density Parity Check codes are being considered for implementation